Highly stretchable organic thermoelectrics with an enhanced power factor due to extended localization length

Junhyeon Jo a, Inseon Oh a, Mi-Jin Jin a, Jungmin Park a, Jae Sung Son a, Ki-Seok An b, Jung-Woo Yoo a, *

a School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
b Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea

A R T I C L E I N F O

Article history:
Received 14 April 2017
Received in revised form 15 August 2017
Accepted 15 August 2017
Available online 18 August 2017

Keywords:
Organic thermoelectrics
Stretchable thermoelectrics
Conducting polymer
Electron delocalization
Hopping transport

A B S T R A C T

Wearable electronics, as a new form of ubiquitous technology, require a sustainable self-powering system with an enhanced mechanical durability. In this report, we demonstrate a conducting polymer based stretchable thermoelectric performance with a synergetic effect of an enhanced power factor due to electron delocalization. The fluorosurfactant treatment of poly(3,4-ethylenedioxythiophene):poly(styrene-sulphonate) (PEDOT:PSS) films induced a significant dedoping effect with an enhanced Seebeck coefficient and a morphological change into an elongated lamellar structure. Such structural transformation led to a reduced transport dimensionality with strongly extended electron delocalization yielding a simultaneous enhancement of the electron mobility and the Seebeck coefficient, which produced an improved thermoelectric power factor. Most notably, the mechanical durability of the PEDOT:PSS film was greatly improved tolerating up to a 60% static strain and over several hundred cycles of 50% strain. The demonstrated concomitant enhancement of the mechanical stretchability and thermoelectric performance inspires a promising approach for improving shape-adjustable self-powering devices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the prospect of wearable electronics as a new paradigm of ubiquitous electronics has been highlighted and a variety of their new functionalities has been developed and tested [1–8]. Operation of these devices requires a continuous self-powering system in order to be functional in any environment [5,9,10]. Various self-powering schemes, such as nano-generator [11,12] and solar cell [13] have been under intense research. The thermoelectric (TE) power generation could be a promising energy source because it sustains a highly reliable power generation without complex components. In addition, a human body maintains a constant temperature regardless of the outdoor weather. The use of the TE device for the wearable electronics can be boosted when the TE materials are able to endure a mechanical strain in order to adjust dynamic motions of the human body. In this strategy, several attempts have been made to enhance mechanical durability of TE materials [4,5,9,14–19]. A flexible TE generator using inorganic bulk particles of Bi₂Te₃ and Sb₂Te₃ has been shown to be operational with a bending radius as low as 20 mm [14]. Carbon nanotube-based composites also displayed the flexible thermoelectricity with an exceptional bendable radius of 2 mm [15]. Intercalation of organic materials into a layered transition metal dichalcogenide (TMDC) also demonstrated flexible TE properties [16]. In addition to the flexible TE operation, the stretchable TE performance was also recently demonstrated by using TMDC nanosheets [9]. However, these materials have drawbacks of scarcity of materials, high temperature synthesis and processing, high production costs, and/or low power generation.

Organic TE materials [20–24], such as conducting polymers, could draw a high hope for the wearable self-powering applications [25]. They are inherently soft, lightweight, and flexible, and can even be stretchable with some chemical additives [26–28]. Besides, they offer several advantages over traditional TE materials, such as low production costs, natural abundance, and facile large-area deposition. While the applications of wearable organic TE module are still in proof-of-principle stage, various device architectures and
fabrics have been proposed and tested [22,24,29,30]. The performance of a TE material is determined by the dimensionless figure of merit $ZT = S^2\sigma T/k$, where S, σ, T, and k are the Seebeck coefficient, electrical conductivity, absolute temperature, and thermal conductivity, respectively [31]. Fine tuning of the parameters, S, σ, and k is essential to improve the efficiency of a thermoelectric power conversion. Unfortunately, these parameters are not independent and entangled each other mostly through trade-off relations [32]. The intrinsic low thermal conductivity of organic materials ($<0.5\ W/mK$) [33–35] is an undeniable merit for improving the ZT value. Most importantly, the organic TE materials could have a complementary relation between S and σ in contrast to the conventional trade-off relation in inorganic TE materials, where increasing S generally reduces σ. This complementary relation in organic TE materials is highly desirable for improving the thermoelectric power factor ($PF = S^2\sigma$) [33].

Poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS), one of the representative conducting polymers, is water-soluble, air stable, restorable, highly transparent, and amenable to a solution-based coating. Above all, its conductivity can be remarkably enhanced (by 2−3 orders of magnitude) by additional solvent treatments, such as sorbitol, ethylene glycol (EG), dimethyl sulfoxide (DMSO), sulfuric acid (H_2SO_4), or nitric acid (HNO_3) [36–41]. These solvent treatments partly wash out the insulating PSS and induce a morphological rearrangement from separated coil-like grains to aggregated and elongated grains [42,43]. In the extreme case, the effect of solvents can even increase both S and σ simultaneously in contrast to the trade-off between these parameters in inorganic TE materials [32,33]. Such peculiar behavior was attributed to the minimized total dopant volume, which assists thermally activated hoppings due to reduced effective tunneling distances [33]. Recent theoretical study emphasized the doping effect on structural configuration and electronic scattering in optimizing ZT [35]. But detailed microscopic understanding on the behavior of the charge transport need to be further addressed.

In this work, we report the PEDOT:PSS based stretchable thermoelectric performance with a synergetic effect of an enhanced power factor due to electron delocalization. The PEDOT:PSS film with the addition of fluorosurfactant Zonyl-FS 300 (Zonyl) displayed a significant dedoping effect, leading to an enhanced S and also a morphological change into a stronger lamellar structure with elongated grains. A detailed study of the carrier transport revealed that the dimensionality of the charge transport was reduced from 2D- to 1D-like hopping with a strongly enhanced electron delocalization. As a result, a simultaneous increase of both S and μ was obtained, resulting in an improved power factor. Most importantly, the PEDOT:PSS films with the addition of Zonyl exhibited a robust stretchable thermoelectric performance enduring up to 60% strain and over several hundreds of strain cycles (up to 50% strain). The demonstrated mechanical durability together with the enhanced TE performance of the conducting polymer establishes a new avenue for further advances in thermoelectric self-powering systems for wearable electronics.

2. Experimental

2.1. Sample preparation and characterization

A PEDOT:PSS solution (Clevis PH1000, Heraeus) was mixed with 5% DMSO and different amounts of Zonyl FS-300 (0%, 0.1%, 1.0%, and 10.0%) in a nitrogen (N_2) filled glove box, which were labeled as PDZ 0%, PDZ 0.1%, PDZ 1%, and PDZ 10%, respectively. The Zonyl FS-300 used in this study was purchased from Dupont. The solutions were stirred by a magnetic bar for more than 6 h at room temperature. SiO_2 (300 nm)/p-Si substrates were used for transport measurements and quartz glasses were used for optical spectroscopy. Prior to a spin coating, these substrates were cleaned with acetone, ethanol, and deionized water in sequence. In order to perform a stretchable performance, the PDMS (Sylgard 184) purchased from Dow Corning was used. A base and curing agent of PDMS were mixed with a ratio of 15:1. The mixed solution was spin-coated on a Si wafer at 200 rpm for 120 s. The spin-coated PDMS films were cured at 50 °C for 12 h. In order to induce a hydrophilic surface of PDMS, UV_2O_3 of Mercury lamp (254 nm) was irradiated for 15 min [27]. After filtering the PDZ solution through a PVDF syringe (0.45 µm), the solution was spin-coated at 1000 rpm (60 s) on the PDMS substrate and at 2000 rpm (60 s) for other substrates. Typical thicknesses of the spin-coated films were ~100 nm, determined by using a surface profiler (P-6, KLA Tencor) and atomic force microscopy (DI-3100, Veeco). Then, the prepared films were annealed on a hot plate at 120 °C for 20 min.

Raman spectra were recorded by using Alpha 300R spectrometer (WITec) with a 532 nm laser source. The laser spot on the sample was ~900 nm diameter with 0.8 numerical aperture (NA) of 50× objective lens, and the obtained spectra were all averaged for 10 repeated acquisitions. UV–Vis–NIR spectra were measured by using Cary 5000 spectrometer (Agilent). The spot size of a light source was 5 mm in diameter. The UV–Vis–NIR spectra were recorded for 1 nm step with a scan rate of 300 nm/min. A D2 lamp for the UV region and a tungsten halogen lamp for the Vis-NIR region were alternatively used for source lights. XPS was performed by utilizing a Thermo Scientific spectrometer (K-Alpha) with a monochromatic Al Ka X-ray source (1486.6 eV). The spot size used for the incident x-ray was 400 µm.

2.2. Electrical and thermoelectric measurement

All electrical measurements including temperature and electric field dependent resistance were carried out in a high vacuum (<10−6 Torr) by using a physical property measurement system (PPMS, Quantum Design). 4-terminal measurements were performed with a Keithley 2636A sourcemeter and a Keithley 2182A nano-voltmeter. For contact electrodes, thermally deposited Au (40 nm)/Cr (0.5 nm) layers were used. Prior to measurements, samples were annealed at 385 K for 1 h in the PPMS chamber in order to eliminate residual moisture.

The temperature dependent resistances were recorded from 10 K to 300 K. Typical source currents used for measurements were kept less than 1 μA to prevent thermal effect at low temperature. Temperature dependent Seebeck coefficients were measured by using a thermal transport option (TTO) of the PPMS. For the measurement, the prepared PDZ solution was spin-coated on a 7 mm × 15 mm quartz substrate. Then, 4-terminal Au/Cr electrodes (1 mm width and 3 mm separation) were thermally deposited on the prepared films. The top and bottom electrodes were connected to heater and cold-foot, respectively. The central two electrodes were used to sense thermoelectric voltages and temperature gradients. At each temperature, the Seebeck coefficient was measured with a 0.1% temperature stability. The recorded data were average values of 60 individual measurements. The typical standard deviations of measured S values were less than 0.3 µV/K.

2.3. Stretchable measurement

The PDZ films were prepared on pre-strained PDMS substrates in order to enhance stretchable performances of the PDZ films. The PDMS substrates were pre-strained (5% strain) by fixing the edges of the substrates with usual clips. Then, the PDZ solution was spin-coated on the pre-strained PDMS and annealed. For a flexible electrical contact, Eutectic Gallium–Indium (EGaIn, Sigma Aldrich)
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات