Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number

Richard A. Secco

PII: S0960-1481(17)30072-1
DOI: 10.1016/j.renene.2017.01.061
Reference: RENE 8500

To appear in: Renewable Energy

Received Date: 4 August 2016
Revised Date: 17 January 2017
Accepted Date: 29 January 2017

Please cite this article as: Secco RA, Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number, Renewable Energy (2017), doi: 10.1016/j.renene.2017.01.061.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Thermal Conductivity and Seebeck Coefficient of Fe and Fe-Si Alloys:
Implications for Variable Lorenz Number

Richard A. Secco, Department of Earth Sciences, University of Western Ontario,
London, Ontario, Canada N6A 5B7

Abstract
The Wiedemann-Franz Law is often used to calculate the thermal conductivity of Fe from
experimental measurements of the electrical conductivity. It is shown by measurements of the
Seebeck coefficient (S) of solid and liquid Fe at pressures up to 6GPa and temperatures up to
2100K that the Sommerfeld value \((L_0 = 2.445 \times 10^{-8} \text{ W} \Omega^{-1} \text{ K}^{-2}) \) of the Lorenz number \((L) \)
represents more than 99% of the electronic component of the thermal conductivity of Fe. Using
experimental values of electrical resistivity and thermal conductivity of Fe, \(L/L_0 \) is shown to vary
by as much as 1.22 in the solid state and 1.32 in the liquid state, signifying a non-negligible
phonon component. An expression for the pressure dependence of \(L \) at the melting boundary up
to 5GPa is derived for electron-phonon scattering. For Fe-Si alloys, \(L/L_0 \) varies more than for
pure Fe and generally increases with increasing Si and state of disorder. New values for the
conductive heat flow in a pure Fe core of Mercury are presented.

Keywords: core heat flow; electrical resistivity; thermal conductivity; Wiedemann-Franz Law,
iron-silicon

1. Introduction
The thermal conductivity of the Earth’s liquid metallic outer core (OC) has direct bearing on the
growth rate of the solid inner core (IC), and therefore its age, as well as the production of the
geomagnetic field through dynamo action. The age of the IC has been estimated to be between
1.0-2.5Ga by energy conservation modelling (Labrosse et al 2001), 1.0-1.5Ga by an increase in
both average geomagnetic field strength and variability (Biggin et al 2015), and as young as
0.5Ga from models employing high thermal conductivity values calculated from measurements
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات