Sustainability performance assessment focusing on coral reef protection by the tourism industry in the Coral Triangle region

Yuti Huang*, Vânia R. Coelho

Department of Natural Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, 50 Acacia Avenue, San Rafael, CA, 94901-2298, United States

HIGHLIGHTS

- Development of a systematic approach to assess sustainability performance.
- Focus on the tourism industry in the Coral Triangle region.
- Economic, social, environmental, and wildlife indicators were used.
- Efficient, inefficient, and overall performance models were developed.
- Indonesia had the best relative performance, and the Solomon Islands the worst.

ARTICLE INFO

Article history:
Received 13 April 2016
Received in revised form 15 August 2016
Accepted 9 September 2016

Keywords:
Coral
Coral Triangle
Coral reef
Ecotourism
Indicators
Performance assessment
Sustainability
Tourism

ABSTRACT

Coral reef based tourism in the Coral Triangle region is responsible for economic benefits but also for negative social and environmental impacts, thus an approach to evaluate this industry’s sustainability performance would be valuable. We selected 10 key indicators, out of 681, that were directly relevant to the impacts of tourist activities on coral reefs in economic, social, environmental, and wildlife aspects of sustainability. Efficiency, inefficiency and overall models were developed to measure relative sustainability performance focusing on coral reef protection by the tourism industry for all six countries in the Coral Triangle, from 2008 to 2012. Our results showed that Indonesia had the best relative performance among countries in the region, followed in descending order by; Papua New Guinea, Malaysia, Philippines, Timor-Leste, and Solomon Islands. Future plans to achieve higher performance by the tourism industry in each country can be made if a comprehensive sensitivity analysis is carried out.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Tourism, directly or indirectly, accounts for around 10 percent of the world’s gross domestic product (US$7.6 trillion annually), and is one of the main sources of employment worldwide (about 227 million jobs) (WTTC, 2015a,b). But in addition to economic benefits, it is also responsible for negative social and environmental impacts (Burke, Reytar, Spalding, & Perry, 2012; Choi & Sirakaya, 2006; UNEP, 2005). Sustainable tourism development is being recognized at an international level as a solution to optimize the use of environmental resources, respect the socio-cultural perspective of local communities, and ensure long-term economic gain (Blancas, Lozano-Oyola, González, Guerrero, & Caballero, 2011, Blancas, Caballero, González, Lozano-Oyola, & Pérez, 2010; Lozano-Oyola, Blancas, González, & Caballero, 2012). An approach to evaluate the sustainability performance of the tourism industry is hence necessary in order to ensure that its overarching goals are being met.

Indicator-based systems have commonly been used to design and implement tourism performance models focusing on sustainability; some of them used indicators individually, others built frameworks connecting different indicators, and a few used mathematical formulas to aggregate several indicators. In all three cases, single or multiple sustainability aspects were addressed...
and indirect impacts of tourist activities can contribute to the mated worldwide average of 60% (Burke et al., 2012). Both direct and indirect economic and environmental impacts, including overfishing and destructive fishing, have led to the loss of 70% of the world’s coral reefs (Burke et al., 2012). The Coral Triangle area, located in one of the most diverse coral reef areas in the world, provides shoreline protection (Asian Development Bank, 2014a, 2014b), as well as natural economic benefit from coral reefs to global tourism was approximately US$10 billion (NOAA, 2012). Nature-based marine tourism contributes approximately 36% of the overall tourism market in the Coral Triangle, providing an important source of income for local communities as direct or indirect employment (2iis Consulting, 2015; UNWTO, 2014). Yet, there is great potential for reef-based tourism to increase (2iis Consulting, 2015).

The Coral Triangle area includes the tropical marine waters of Indonesia, Malaysia, Papua New Guinea, Philippines, Solomon Islands, and Timor-Leste. These six countries have collaboratively committed to a regional plan in 2007, known as the Coral Triangle Initiative, to protect their coastal biodiversity. Moreover, national plans aligned with the regional plan were also developed in 2009 in order to preserve the marine ecosystems of this area (Coral Triangle Initiative, 2016). In addition to its importance to tourism, coral reefs are also the main source of protein for local communities and provide shoreline protection (Asian Development Bank, 2014a; Burke et al., 2012).

Despite the significant economic and ecological value of these ecosystems in the Coral Triangle, they are endangered by local human activities and global climate change (Allen, 2008; Veron, 2009). Over 85% of the reefs in this region are estimated to be locally threatened by human activities, much more than the estimated worldwide average of 60% (Burke et al., 2012). Both direct and indirect impacts of tourist activities can contribute to the degradation of coral reefs, and a long-term partnership between the tourism industry and government agencies is greatly needed to reverse this trend (GBRMPA, 2014).

The most significant local threats to coral reef ecosystems in the Coral Triangle region are overfishing and destructive fishing (2iis Consulting, 2015). Tourist visitors in this area increased 63% from 2005 to 2013, and the overall market of the tourism industry is expected to grow by 75% in next 10 years, which will likely lead to even greater fishing demand and intensification of the issues (2iis Consulting, 2015; Outra, Sari, Sukandar, Malik, & Prabuning, 2016). Some of the other main local threats include; watershed-based pollution, poorly planned coastal development that can increase sedimentation and nutrient runoff, as well as, coral removal from reefs for use as construction material or sold commercially in the aquarium trade or as souvenirs (Burke et al., 2012; Jompa et al., 2016).

The Coral Triangle Initiative addresses many of the issues listed above, and among its goals is to identify priority seascapes for focused support (CTI-CFF, 2009). Considering the central importance of the tourism industry in the economy of these countries, it would be helpful to assess its sustainability performance as additional information to be used in their prioritization analysis. The main target of this study was to distinguish in which countries the tourism industry performed particularly poorly, highlighting a greater need for improvement. After key indicators have been identified, specific recommendations for improvements can be made in further studies using comprehensive sensitivity analysis methods (Saisana, Saltelli, & Tarantola, 2005). Our approach could possibly be applied at a local scale as well, provided that the models’ assumptions are met and there is enough data available.

We initially identified potential indicators from a literature re-view in the field of ecotourism and coral reef protection, and, then classified sustainability indicators into four aspects: economic, social, environmental, and wildlife. Key indicators were selected using a set of criteria described by Huang et al. (2011). After indicator selection, we developed; efficient, inefficient, and overall performance assessment models, that evaluated the relative sustainability levels in the tourism industry among different countries in the Coral Triangle region from 2008 to 2012.

2. Methodology

In this section, we explain the criteria for selecting key indicators, as well as the models used to measure the tourism industry’s SPFCRP.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Indicator-based systems for designing and implementing tourism performance models focusing on sustainability.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
<td>Indicator-based systems</td>
</tr>
<tr>
<td></td>
<td>Framework<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Mathematical<sup>b</sup></td>
</tr>
<tr>
<td>Social</td>
<td>Blancas et al. (2011), Park and Yoon (2010)</td>
</tr>
<tr>
<td>Multiple</td>
<td>Jachmann et al. (2011), Johnsen, Bieger, and Scherer (2008)</td>
</tr>
<tr>
<td></td>
<td>Lactignola, Petrosillo, Cataldi, and Zurlini (2007), Waite et al. (2014)</td>
</tr>
</tbody>
</table>

^a Used indicators individually.
^b Built frameworks connecting different indicators.
^c Used mathematical formulas to aggregate several indicators.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات