Accepted Manuscript

Seed layer-assisted low temperature solution growth of 3D ZnO nanowall architecture for hybrid solar cells

Nanaji Islavath, Dibakar Das, Shrikant V. Joshi, Easwaramoorthi Ramasamy

PII: S0264-1275(16)31533-7
Reference: JMADE 2563
To appear in: Materials & Design
Received date: 16 August 2016
Revised date: 2 December 2016
Accepted date: 5 December 2016

Please cite this article as: Nanaji Islavath, Dibakar Das, Shrikant V. Joshi, Easwaramoorthi Ramasamy, Seed layer-assisted low temperature solution growth of 3D ZnO nanowall architecture for hybrid solar cells. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2016), doi: 10.1016/j.matdes.2016.12.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Seed Layer–assisted Low Temperature Solution Growth of 3D ZnO Nanowall Architecture for Hybrid Solar Cells

Nanaji Islavatha,b, Dibakar Dasb, Shrikant V. Joshia and Easwaramoorthi Ramasamya*

aCentre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
bSchool of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India.

*Corresponding author. Tel.: +91–40–24452457
Fax: +91–40–24442699
E-mail: easwar@arci.res.in

Abstract

Aligned metal oxide nanostructures carry electrons efficiently, and are therefore ideal building blocks for next-generation optoelectronic devices. Herein, we report the seed-layer-assisted low-temperature solution growth of aligned 3D ZnO nanowall architecture on arbitrary substrates. By introducing a controlled amount of Al into a seed-layer, the morphology of ZnO nanostructure is gradually changed from nanowire to 3D nanowalls. Time-dependent growth experiments suggest that hydroxyl-ions present in growth solution react with Al to form Al(OH)$_4^-$ which in turn binds to the positively charged Zn$^{2+}$ surface and partially blocking ZnO growth along the (0001) direction and promoting lateral growth. Such aligned 3D ZnO nanowall architecture, with the unique combination of high surface-area and cage-like pores, grown on seed-layer coated transparent conductive substrate is found to be beneficial for electron transporting material (ETM) in perovskite solar cells and a maximum photocurrent density (J_{SC}) of 7.5 mA.cm$^{-2}$ and a power conversion efficiency (\(\eta\)) of 2.4 % are demonstrated. Our facile approach readily allows further growth of ZnO nanowires on 3D ZnO nanowall surface; thereby improving the perovskite-ZnO interface and increasing the J_{SC} and η to 9.7 and 3.3 %, respectively. This 3D ZnO nanowall–nanowire architecture opens up a novel configuration for designing high-performance optoelectronic devices.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات