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High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this
paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain
forward modeling processes. We first derive the discretization of frequency-domain wave equations via
numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients

of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time.
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Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of
DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our
proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution
inverse results are obtained.
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1. Introduction

Full waveform inversion (FWI) is a hot topic in geophysical research.
Computational mathematicians and geophysicists produced outstand-
ing work in past decades (Lailly, 1983; Tarantola, 1984; Kolb et al.,
1986; Mora, 1987), establishing foundation for the development of
high-resolution seismic imaging technology. FWI was first studied in
the time domain (Tarantola, 1986). In the 1990s, Pratt et al. (1998)
proposed performing FWI in the frequency domain and established
the corresponding inversion theory (Pratt, 1999). The frequency-
domain FWI has many advantages, which are discussed in detail by
Song and Williamson, 1995 and Lang and Yang (2017).

Forward modeling is known to be a critical aspect of FWI. The major
operations and computing time costs of waveform inversion are associ-
ated with the forward modeling processes. Thus, the efficiency of FWI is
largely influenced by the forward modeling algorithms. When
performing forward modeling in the frequency domain, one should
first select proper numerical schemes to discretize the frequency-
domain wave equations and implement absorbing boundary condi-
tions, such as perfect matched layers (PML) (Komatitsch and Tromp,
2003), at the boundary of the computing area. Then, a large sparse linear
algebraic system is obtained. An efficient method for solving the linear
system is necessary. Thus, a complete set of frequency-domain forward
algorithms includes a spatial discretization scheme, an absorbing
boundary condition and an effective solver for the linear system.
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The commonly used numerical schemes for numerical modeling in
the geophysical community include finite difference methods (Kelly
et al,, 1976; Igel et al., 1995; Liu et al., 2014a), finite element methods
(Lysmer and Drake, 1972; Marfurt, 1984; Liu et al., 2014b), pseudo-
spectral methods (Kosloff and Baysal, 1982), and spectral element
methods (Seriani and Priolo, 1994; Komatitsch et al., 2005). Finite
difference methods have been widely used due to their easy implemen-
tation, high computational efficiency, low memory costs and high
parallelism. The nearly analytic discrete (NAD) method is a novel finite
difference method. It possesses most of the merits of conventional finite
difference methods but has additional advantages, including the ability
to more easily suppress numerical dispersion, shorter operator length
and the ability to provide more wavefield information (Yang et al.,
2003, 2004, 2006). Furthermore, dispersion analysis shows that the
numerical velocity associated with the NAD method is closer to the
physical velocity of seismic wave propagation compared with other
classical numerical schemes (Yang et al., 2010, 2012). The NAD method
was first introduced in frequency-domain forward modeling by Lang
and Yang (2017). The frequency-domain NAD method also has the
ability to suppress numerical dispersion and save computing time,
resulting in properties similar to those properties in the time domain.

When using a numerical scheme to discretize the frequency-domain
wave equations, the linear system should be solved efficiently. Never-
theless, this process is not easy due to the special properties of the coef-
ficient matrix (also called the impedance matrix) (Pratt, 1999). In most
cases, the impedance matrix is large in scale and has a certain sparse
structure. The values of its elements are complex due to absorbing
boundary conditions and are dependent on the spatial interval size
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and frequency. If the frequency values are large enough, the impedance
matrix become indefinite (its eigenvalues are located at both sides of
imaginary on the complex plane), ill conditioned and even close to a
singular matrix. Such factors make it difficult to solve the linear system,
and many conventional methods usually work poorly. The methods for
solving this linear system can be divided into two categories: direct
methods and iteration methods. The direct methods are based on LU fac-
torization with node reordering techniques (George, 1977). The iteration
methods include preconditioned Krylov methods (Saad, 2003; Lang and
Ren, 2015), multigrid methods (Kim and Kim, 2002; Plessix, 2007) and
domain decomposition methods (Hagstrom et al., 1988; Gander et al.,
2007). Each approach has its advantages and intrinsic drawbacks,
which have been analyzed in detail by Lang and Yang (2017). Notably,
a class of inexact rotated block triangular (IRBT) preconditioners (Lang
and Ren, 2015) associated with Krylov subspace methods, such as
GMRES (Saad and Schultz, 1986) and BiCGSTAB (Sleijpen and
Fokkema, 1993), can solve this type of linear system effectively. Some
numerical results show the superiority of such preconditioners with re-
spect to other convention methods (Lang and Yang, 2017).

The acceleration of the frequency-domain forwarding modeling
processes can be usually achieved according to three approaches:
(i) Using high-precision numerical schemes to discretize the wave
equation. High-precision numerical schemes can more easily sup-
press numerical schemes and the discrete grids can be coarser
(Yang et al., 2003, 2006). Thus, the problem scale decreases, and
computing time can be saved. (ii) Constructing more effective
methods to solve the linear system. Solving the linear system effec-
tively is a well-known challenge for FWI in the frequency domain.
Therefore, an efficient method for solving the linear system is critical.
(iii) Making the linear system easier to solve. To maintain a certain
precision, we decrease the condition number of the impedance ma-
trix by developing numerical schemes, and the corresponding linear
system becomes easier to solve. Thus, the solving process costs less
computing time.

In this work, the approach (iii) described above is adopted to
accelerate the frequency-domain forward modeling. Based on the NAD
method, we adjust the coefficients of the numerical stencils to obtain
the DNAD method. When using the DNAD method to discretize the
wave equations, the main diagonal part of the impedance matrix is
more concentrated, and the corresponding condition number is lower.
Thus, the process of solving the linear system is more stable and costs
less computing time. To some extent, this concept is similar to
constructing preconditioned iteration methods to solve the linear
system. Both of these ideas involve decreasing the condition number
of the impedance matrix and reducing computational costs in the
solving processes.

Here, we first derive the DNAD method based on the ordinary
fourth-order NAD method. Then, the DNAD method is used to discretize
frequency-domain wave equations with the PML absorbing boundary
condition. We analyze the properties of its coefficient matrix in detail
and propose to use IRBT preconditioners associated with the GMRES
method to solve the linear system. Wavefield simulation and numerical
dispersion analysis are implemented to examine the numerical
behavior of the DNAD method. We also perform FWI in the frequency
domain based on the DNAD method for a two-layer medium model.
The numerical results illustrate the effectiveness of our proposed
method.

2. Frequency-domain wave equation

Consider the following two-dimensional frequency-domain acoustic
wave equation in a constant-density medium:

2

Au(x,z) +C—2u(x,z) =— ! s, (x,z)€D, (1

c

—

where A is the two-dimensional Laplace operator, @ = 2mf denotes the
angular frequency, c(x,z) is the velocity of acoustic wave propagation, s
is the seismic source term and D denotes the two-dimensional comput-
ing area. We introduce the general approach for the numerical schemes
based on the NAD method to discretize Eq. (1). Firstly, the partial
derivative forms of Eq. (1) need to be derived with respect to x and z,
which yield the following;:
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Note that Eq. (2) contains the actual discrete partial differential
equations for all types of NAD methods.

To eliminate the influence of reflected waves from artificial
boundaries, we should consider an absorbing boundary condition.
Here, we adopt the PML boundary condition (Komatitsch and
Tromp, 2003), which is one of the most widely used absorbing
boundary conditions. The x-direction is taken as example to derive
the absorbing boundary condition. The relationship between the
complex coordinate X in the PML region and the real coordinate x is
as follows:
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where d,(x) > 0 is the attenuation function, and i = v —1 denotes the
imaginary unit. From Eq. (3), we obtain the following equation.
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The choice of dy(x) is from Komatitsch and Tromp (2003):
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where 6 is the width of the PML layer, a is the acoustic wave speed in the
PML region, and R is the theoretical reflection coefficient after
discretization, which can be chosen to be a small constant (typically
1073).

After replacing x and z with x and z, the partial differential equations
in Eq. (2) can be rewritten as follows:
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Next, x and z in Eq. (6) need to be changed into x and z according to
Eq. (4). The detailed derivation based on (Lang and Yang, 2017). To
avoid repetition, we present the frequency-domain wave equations
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