The generalized asymmetric dynamic covariance model

Peter de Goeija, b, Wessel Marqueringc, *

a Department of Finance, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
b Catholic University of Leuven, Belgium
c Department of Financial Management, F4-26, Rotterdam School of Management, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands

Received 25 January 2005; accepted 1 April 2005
Available online 27 April 2005

Abstract
In this paper we extend the ADC model of Kroner and Ng [1998. Review of Financial Studies 11, 817–844] such that it allows for cross-asymmetries in conditional volatility. That is, the model allows for asymmetries in covariances after shocks of opposite signs. We find evidence for significant cross-asymmetries in the conditional volatility in stock and bond markets.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Stock and bond market interaction; Time-varying covariances; Asymmetric volatility

1. Introduction

While there exists a large amount of literature on time-varying conditional variances of either stock and bond returns, the number of studies on conditional covariances between these returns is rather limited. One of the most influential studies on modeling time-varying covariances is a study by Kroner and Ng (1998). They introduced the Asymmetric Dynamic Covariance (ADC) model, a multivariate GARCH model that nests several other multivariate models and allows for asymmetric volatility. However, their approach does
not take into account cross-asymmetric volatilities: the conditional variance and covariance between asset returns can be higher (or lower) after a negative shock in one asset and a positive shock in the other asset, rather than shocks of opposite signs of the same magnitude. Recently, De Goeij and Marquering (2004) showed that cross-asymmetries can be statistically and economically significant in a multivariate GJR (Glosten et al., 1993) setting. As we concentrate in this note on the interaction between stocks and bonds, we observe many shocks of opposite signs. We propose an extension of the ADC model that incorporates cross-asymmetries in conditional variances and covariances. We refer to this model as the Generalized Asymmetric Dynamic Covariance (GADC) model. To test the appropriateness of the model we examine the asymmetric volatility behavior of stock and bond market returns.

2. The generalized asymmetric dynamic covariance model

Consider the multivariate return equation

\[r_{t+1} = \mu_{t+1} + \varepsilon_{t+1}, \]

where \(\mu_{t+1} = E\{r_{t+1} \mid I_t\} \) is the conditional mean and \(I_t \) denotes the information known at time \(t \). The error term \(\varepsilon_{t+1} \) has the properties

\[E\{\varepsilon_{t+1} \mid I_t\} = 0, \quad E\{\varepsilon_{t+1}^2 \mid I_t\} = H_{t+1}, \]

where \(H_{t+1} \) is the conditional covariance matrix, consisting of conditional covariances \((h_{ij,t+1}) \) and conditional variances \((h_{ii,t+1}) \).

Next, define \(\varepsilon_{i,t-1}^+ \) as a vector with elements \(\varepsilon_{i,t-1}^+ = \max[0, \varepsilon_{i,t-1}] \) and \(\varepsilon_{i,t-1}^- \) as a vector with elements \(\varepsilon_{i,t-1}^- = \min[0, \varepsilon_{i,t-1}] \). We extend the ADC model by adding symmetric transformations of \((\varepsilon_{i,t-1}^+ \varepsilon_{j,t-1}^-) \) and \((\varepsilon_{i,t-1}^- \varepsilon_{j,t-1}^+) \). The operator \(\Xi(\cdot) \), makes a non-symmetric matrix symmetric, using the elements of the lower-triangular part of the matrix. That is

\[\Xi\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} d_{11} & d_{21} & \cdots & d_{n1} \\ d_{21} & d_{22} & \cdots & d_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{pmatrix}, \]

where

\[\Xi = D_t RD_t + \Phi \otimes \Theta_t, \]

The GADC model becomes:

\[H_t = D_t RD_t + \Phi \otimes \Theta_t, \]

where

\[H_t = (h_{ij,t}), \]

\[D_t = (d_{ij,t}), \quad d_{ii,t} = \sqrt{\theta_{ii,t}}, \quad \forall i, \text{ and } d_{ij,t} = 0, \quad \forall i \neq j, \]

\[\Theta_t = (\theta_{ij,t}), \]

\[R = (\rho_{ij}), \quad \rho_{ii} = 1, \quad \forall i, \text{ and } \rho_{ij} = \rho_{ji}, \]
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات