Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller

Thiyam Tamphasana Devi a, Bimlesh Kumar b,*

a Civil Engineering, NIT Manipur, India
b Civil Engineering, IIT Guwahati, Guwahati 781039, India

A R T I C L E I N F O

Article history:
Received 21 July 2016
Revised 21 October 2016
Accepted 7 November 2016
Available online xxxx

Keywords:
Curved blade impeller
CFD
Gas-liquid
Mass transfer coefficient
Power draw

Abstract

Present work compares the mass transfer coefficient (kLa) and power draw capability of stirred tank employed with Rushton and curved blade impeller using computational fluid dynamics (CFD) techniques in single and double impeller cases. Comparative analysis for different boundary conditions and mass transfer model has been done to assess their suitability. The predicted local kLa has been found higher in curved blade impeller than the Rushton impeller, whereas stirred tank with double impeller does not show variation due to low superficial gas velocity. The global kLa predicted has been found higher in curved blade impeller than the Rushton impeller in double and single cases. Curved blade impeller also exhibits higher power draw capability than the Rushton impeller. Overall, stirred tank with curved blade impeller gives higher efficiency in both single and double cases than the Rushton turbine.

1. Introduction

Gas-liquid tanks are widely used in several process industries to carry out various gas-liquid reactions [36,14]. The characteristic of fluid dynamics in such tanks is generally understood through the mechanism of interaction between the two phases (gas-liquid) in terms of mass transfer. Studies based on gas-liquid phase in stirred tank were done by several researchers [17,1,30] to predict the mass transfer coefficient in stirred tank. Mass transfer depends on various factors like types and number of impeller, gas superficial velocity and impeller speed. Researchers have used different models to predict mass transfer coefficient such as Higbie Penetration model [13] and surface renewal model [6]. Gimbun et al. [12] used Higbie and Danckwerts model to predict mass transfer on single impeller of Rushton and curved blade impeller. Ranganathan and Sivaraman [30] used two more models apart from above mentioned which are based on slip velocity (difference of gas velocity and liquid velocity).

One of the other significant design parameters for a multiphase stirred tank reactor is the power draw by the agitator which is affected by the physical properties, operating parameters, and geometrical parameters. It is defined as the amount of energy necessary in a period of time, in order to generate the movement of the fluid within a vessel by means of mechanical or pneumatic agitator [32]. Economic selection criteria for an impeller are greatly influenced by the power input for stirred tank application. Researchers [24,23,32] have proposed different correlations to quantify the gassed power input (gas-liquid phase) since the power input is significantly different from gas-liquid phase (gassed condition) and liquid–liquid phase (ungassed condition).

Impeller types and number plays vital role in mass transfer and power consumptions in gas-liquid stirred tanks. Study of Rushton impeller [16,38,21,11] for mass transfer and power input is widely available in literature, however, study forcurved blade impeller is found very less in literature except few studies done by Myers et al. [27]; Gimbun et al. [12] and Devi and Kumar [7]. In this study, Rushton and curved blade impeller in single and double case is being studied in gas-liquid phase taking constant bubble diameter with Eulerian-Eulerian multiphase model. This study aims in predicting mass transfer and power draw and comparing with published literature.

2. Numerical model

Eulerian-Eulerian multiphase model is used to simulate the hydrodynamics of flow in this study. The continuous and disperse phases are treated as interpenetrating media identified by their local volume fractions. The Reynolds averaged mass and momentum balance equations are solved for each of the phases and are given as follows:

* Corresponding author.
E-mail address: bimk@iitg.ernet.in (B. Kumar).
Peer review under responsibility of Karabuk University.
The governing equations of turbulent kinetic energy, the gas-liquid phase flow as gas is dispersed in continuous liquid. Multiphase turbulence model is used in this study to simulate the rate of production of turbulent kinetic energy and the laminar and turbulent stresses. The Reynolds stress tensor and Boussinesq hypothesis are given as

\[
\frac{\partial}{\partial t}(\rho_i u_i) + \nabla \cdot (\rho_i u_i u_j) = -\tau_{i\text{eff}} + \tilde{F}_i + \alpha_i \rho_i g,
\]

where \(p \) is the pressure shared by the two phases and \(\tilde{F}_i \) represents the Coriolis and centrifugal forces applied in MRF (multiple reference frame) impeller model which is used in this study as impeller model. The Reynolds stress tensor \(\tau_{i\text{eff}} \) is the laminar and turbulent stresses and by Boussinesq hypothesis, it is given as

\[
\tau_{i\text{eff}} = \alpha_i (\mu_{\text{laminar}, i} + \mu_{t, i}) (\nabla u_i + \nabla u_i^\text{T}) - \frac{2}{3} \alpha_i (\rho_i k_i + (\mu_{\text{laminar}, i} + \mu_{t, i}) \nabla \rho_i) \tilde{I}
\]

\(\mu_{\text{laminar}, i} \) and \(\mu_{t, i} \) are laminar and turbulent viscosity. \(k_i \) is turbulent kinetic energy and \(\tilde{I} \) is unit tensor.

2.1. Turbulence model

Standard \(k-\epsilon \) turbulence model [29] with dispersed \(k-\epsilon \) multiphase turbulence model is used in this study to simulate the gas-liquid phase flow as gas is dispersed in continuous liquid. The governing equations of turbulent kinetic energy, \(k \) and turbulent dissipation rate, \(\epsilon \), are solved only for liquid phase as:

\[
\frac{\partial}{\partial t}(\rho_i u_i) + \nabla \cdot (\rho_i u_i u_j) = -\tau_{i\text{eff}} + \tilde{F}_i + \alpha_i \rho_i g,
\]

Turbulent liquid viscosity is given as:

\[
\mu_{\text{t, liquid}} = \rho_i C_{\mu} \frac{k_i^2}{\epsilon_i}
\]

\(G_{\text{eff}} \) is the rate of production of turbulent kinetic energy. \(\Pi_{\text{laminar}} \) and \(\Pi_{\text{turbulent}} \) represent the influence of the dispersed phase on the continuous phase [8]. \(C_{\mu}, C_{1, \mu}, C_{2, \mu}, C_{3, \mu}, \alpha_1 \) and \(\sigma_1 \) are constants of standard \(k-\epsilon \) model. Their values are 0.09, 1.44, 1.92, 1.2, 1.0 and 1.3 respectively.

2.2. Inter-phase momentum exchange

Only drag force is considered in the present work as other forces (lift and virtual) have been neglected because of its less significance in phase interaction [18]. Hence, \(\tilde{R}_i \) from Eq. (3) reduced only to drag force as:

\[
\tilde{R}_i = -\tilde{R}_g = K(\tilde{U}_g - \tilde{U}_l)
\]

\(K \) is the liquid-gas exchange coefficient given as:

\[
K = \frac{3}{4} \rho_i \alpha_i \frac{C_D}{d_b} (\tilde{U}_g - \tilde{U}_l)
\]

\(d_b \) is the bubble diameter and \(C_D \) is the drag coefficient defined as function of relative Reynolds number, \(Re_p \). The standard formulation of \(Re_p \) does not account the effect of turbulence on bubble movement. Hence \(Re_p \) has been modified to include the effect of turbulence [17]:

\[
Re_p = \frac{\rho_i \tilde{U}_g - \tilde{U}_l}{\mu_i + C \mu_{t, i}}
\]
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات