## Accepted Manuscript

Research Paper

Analysis of Fluid Flow and Heat Transfer on a Solar Updraft Tower Power Plant Coupled with a Wind Turbine using Computational Fluid Dynamics

Ehsan Gholamalizadeh, Jae Dong Chung

PII: S1359-4311(17)30312-5

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.192

Reference: ATE 10860

To appear in: Applied Thermal Engineering

Received Date: 15 January 2017 Revised Date: 6 July 2017 Accepted Date: 26 July 2017



Please cite this article as: E. Gholamalizadeh, J. Dong Chung, Analysis of Fluid Flow and Heat Transfer on a Solar Updraft Tower Power Plant Coupled with a Wind Turbine using Computational Fluid Dynamics, *Applied Thermal Engineering* (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.192

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Analysis of Fluid Flow and Heat Transfer on a Solar Updraft Tower Power Plant

Coupled with a Wind Turbine using Computational Fluid Dynamics

Ehsan Gholamalizadeh, Jae Dong Chung\*

Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea

**Abstract:** 

The objective of this study was to develop a more realistic numerical model for solar

updraft tower power plants. To accomplish this, a three-dimensional (3-D) simulation

for the geometric parameters of the Manzanares prototype coupled with a real turbine

was carried out using computational fluid dynamics (CFD). The RNG k-ε turbulence

closure, discrete ordinates (DO) non-grey radiation model and solar ray-tracing

algorithm were employed. In addition, a comparatively simpler simulation using a

reverse fan model to implement pressure drop across the turbine was conducted. The

pressure, velocity and temperature distributions through the system were considered,

and the results of the simplified model were compared to those of a system coupled

with a real turbine, to assess the proper pressure jump value to be assigned in the

reverse fan model. Results showed that, compared to the real turbine model pressure

drop, the reverse fan model with a 43.7% lower assigned pressure jump predicted the

same performance. The numerical model developed in this study provides a highly

accurate and reliable approach for predicting the performance of a solar updraft tower

power plant, taking into account all the main phenomena of the system.

Keywords: Computational fluid dynamics, Renewable Energy, Solar Updraft Tower

Power Plant, Wind Turbine

\*Corresponding author: Tel.: +82 2 3408 3776; fax: +82 2 3408 4333;

E-mail addresses: jdchung@sejong.ac.kr (J.D. Chung), ehsan@sejong.ac.kr (E. Gholamalizadeh).

## دريافت فورى ب

## ISIArticles مرجع مقالات تخصصی ایران

- ✔ امكان دانلود نسخه تمام متن مقالات انگليسي
  - ✓ امكان دانلود نسخه ترجمه شده مقالات
    - ✓ پذیرش سفارش ترجمه تخصصی
- ✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
  - ✓ امكان دانلود رايگان ۲ صفحه اول هر مقاله
  - ✔ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
    - ✓ دانلود فوری مقاله پس از پرداخت آنلاین
- ✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات