Bayesian clinical trial design using Markov models with applications to autoimmune disease

Barry S. Eggleston a, Joseph G. Ibrahim b,*, Diane Catellier a

a RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC 27709, USA
b Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

1. Introduction

Immune Thrombocytopenia (ITP) is an autoimmune disease associated with bleeding. The bleeding is the result of impaired platelet production that is often persistent and chronic and due to platelet destruction by the immune system [5]. ITP treatment consists of two objectives: quickly raising the platelet count to a therapeutic level to stop the ITP relating bleeding and maintaining the therapeutic platelet level to prevent future ITP-related bleeding. Current treatment uses established treatments to address the first objective, but clinicians need improved treatments to reduce the risk of relapse among initial treatment responders. To identify these improved treatments, clinical researchers need efficient effect estimation models to properly account for failure to meet either objective.

This article proposes a three-state Markov Bayesian model that can incorporate historical control data if necessary to evaluate experimental ITP treatments while taking into account the two possible failure modes mentioned above. The multi-state nature of the model accounts for these two types of failure. The Bayesian model allows for inclusion of prior information and historical control data via the power prior of Ibrahim and Chen [7]. Using simulation, we demonstrate how the proposed Bayesian model can be used to estimate hazard rates and ratios from ITP trial data, its power and type 1 error characteristics, and how the model responds to differences between randomized and historical control relapse rates.

The ITP trial design, for which the Bayesian model is used to estimate parameters, consists of one active arm and one control arm, into which patients are randomized at the time of enrollment using a 1:1 ratio. After enrollment, both arms are treated with a selected therapy.
intended to raise the platelet counts to therapeutic levels. One possible outcome of this initial treatment is failure to respond. After this initial treatment period, initial responders in both arms have their treatment regimens modified to allow for a comparison of at least one experimental therapy with respect to ITP relapse rates. For example, responders in the control arm might receive standard relapse prevention care while the active arm might begin to take an experimental therapy intended to reduce relapse rates relative to standard care. Using data collected from the trial design, the Bayesian model is used to estimate initial and relapse failure rates and hazard ratios, as well as response rates to the initial treatment.

Another part of the design involves the platelet assessment schedule. Platelet levels are assessed periodically according to a pre-specified schedule. If the primary outcome is time-to-relapse and relapse is defined as time until platelet levels are less than some threshold, then the time-to-relapse will be interval censored. Therefore, the Bayesian model also takes interval censoring into account.

2.2. Three-state model

As noted earlier, ITP treatment failure occurs in two ways. A subject is an initial non-responder (an initial failure), if he or she does not experience therapeutically high platelet levels during initial treatments to raise platelet levels. On the other hand, an initial responder can experience relapse if the initial responder experiences critically low platelet levels at some later time. In order to accurately estimate the relapse failure rate, modelling needs to account for the possibility of initial failure, initial nonresponse. If these two paths to failure are combined with an initial state of critically low platelet counts, and a second state of initial treatment response, then a three-state model identical to an Illness-Death model can be used to accurately estimate the relapse failure rate without confounding from the initial failure rate, Fig. 1 [3,13].

State 1 of the three-state model represents a patient's initial condition of critically low platelet levels. State 2 represents initial treatment responders who have obtained a therapeutically high platelet count. A subject can reach State 2 only from State 1, a "1–2" transition. State 3 represents treatment failure, and subjects can reach State 3 from States 1 or 2. First, a subject with a critically low platelet count could fail to respond to initial treatment within a pre-specified period. This subject is an initial non-responder and reaches State 3 from State 1, a "1–3" transition. Second, a subject could fail by relapsing to a critically low platelet count after reaching State 2, a "2–3" transition. In an ITP trial that is evaluating a treatment for relapse, transitions rates between States 1 and 2 should be high and transition rates between States 1 and 3 may be driven mostly by treatment protocol with respect to the definition of an initial non-responder. A subject must be observed to occupy State 2 before a "1–2" transition can be declared, and only subjects who are observed to occupy State 2 can contribute to the estimation of 2–3 transition model parameters. The proposed Bayesian model presented in this paper can be used to estimate all six transition rates, three for each arm, and all three hazard ratios.

2.3. Likelihood and priors for the randomized component of the Bayesian trial design

The MCMC models used in this article are based on exponential distributions with the mean transition time equal to a function of treatment. The likelihood function component for the 1–2 transition is given in Eq. (1), where $\delta_1 = 1$ indicates whether or not the transition time is interval censored, (t_{12k}, t_{12k}), $\delta_2 = 2$ indicates a right censored at an unknown value, t_{12k}, $\delta_3 = 3$ indicates a right censored at a known value t_{12k}, $\delta_4 = 3$ indicates a right censored time occurs when an observed but interval censored 1–3 transition occurs. The values t_{12k} and t_{12k} are left and right interval time points for an interval censored 1–2 transition time similar to SAS’s input structure for interval censoring in PROC LIFEREG. In case of a right censored time point, only one value is needed, so when $\delta_1 = 3$ the value of t_{12k} represents the exact timing of a right censored 1–2 transition time. The value of t_{12k} can be any value allowable by the estimation algorithm. Similarly, when $\delta_1 = 2$ the value of t_{12k} represents the predicted value of a 1–3 transition time, but due to competing risk between 1–2 and 1–3 transitions t_{12k} also is equal to the predicted time when the 1–2 transition was right censored. A predicted right censored 1–2 transition time is needed when a subject transitions out of State 1 into State 3, because the transition timing into State 2 is right censored at an unknown value. The 1–3 transition time is interval censored, so the right censored transition time for the 1–2 transition by making a random draw from a truncated version of 1–3 transition time distribution. The μ_{12k} is the exponential mean for the 4th subject [11]. The parameter μ_{12k} is linked with the treatment variable by the log link, $\log(\mu_{12k}) = \beta_{120} + \beta_{121}Tr_{t_0}$, where Tr_{t_0} equals 1, if subject is in the active arm and 0 otherwise.

\[
L_{12k} = \prod_{i=1}^{n_k} \left[\exp \left(-\frac{t_{12k}}{\mu_{12k}} \right) \right]^{\delta_1-1} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_2-1} \left[\exp \left(-\frac{t_{12k}}{\mu_{12k}} \right) \right]^{\delta_3-1} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_4-2}
\]

In summary: using a convention similar to the SAS convention for representing interval censoring, if the subject experienced a 1–2 transition within the interval (t_{12k}, t_{12k}), then δ_1 equals 1. If the subject was right censored at an unknown value due to an observed but interval censored 1–3 transition, then the transition interval is represented by (t_{13k}, C) and δ_1 will equal 2, where t_{13k} is a predicted value of when the 1–3 transition occurred and C is some arbitrary value larger than the possible maximum follow-up time. This C value was necessary given the JAGS 4.2 fitting algorithm used to estimate parameter posterior distributions. If the subject was right censored at a known value, then the transition interval is represented by (t_{13k}, C) and δ_1 equals 3, where C is some arbitrary value larger than the possible maximum follow-up time.

Due to competing risks among 1–2 and 1–3 transitions, the likelihood function component for the 1–3 transition is similar to the likelihood function for the 1–2 transition and is given in Eq. (2), where δ_3 indicates transition type. $\log(\mu_{13k}) = \beta_{130} + \beta_{131}Tr_{t_0}$ and t_{13k}, t_{13k}, t_{13k} are defined in a similar manner as t_{12k}, t_{12k}, and t_{13k}.

In the case of interval censored 1–3 transition, the values t_{13k} and t_{13k} are left and right endpoints of a 1–3 transition. In the case of right censoring at a known value, t_{13k} is equal to the known timing of the right censoring. In the case of right censoring at an unknown value, t_{13k} is equal to the predicted timing of a 1–2 transition which due to competing risks is equal to the predicted time of a right censored 1–3 transition time.

\[
L_{13k} = \prod_{i=1}^{n_k} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_1-1} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_2-1} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_3-1} \left[\exp \left(-\frac{t_{13k}}{\mu_{13k}} \right) \right]^{\delta_4-2}
\]

To estimate the 1–2 transition and 1–3 transition rates using the Bayesian model, priors need to be placed on β_{120}, β_{131}, β_{130} and β_{131}. In this paper, non-informative $N(\mu = 0, \sigma = 100)$ priors are used.

Since t_{12k} and t_{13k} are predicted values, predictive distributions need to be identified for t_{12k} and t_{13k}. The values of t_{12k} will be drawn from a truncated version of the model's estimated exponential distribution for the 1–2 transition times, since the censoring mechanism for the 1–3 transition is equal to the 1–2 transition mechanism. For t_{12k} the truncation will be driven by subject specific left and right values of the observed interval censored 1–2 transition. For t_{13k} the truncation will be driven by subject specific left and right values of the observed interval censored 1–3 transition. Given the assumption of exponential
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات