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a b s t r a c t

This paper presents an analysis of the bullwhip effect and net-stock amplification in a three-echelon

supply chain considering step-changes in the production rates during a product’s life-cycle demand.

The analysis is focused around highly complex and engineered products (e.g., automobiles), that have

relatively long production life-cycles and require significant capital investment in manufacturing. Using

a simulation approach, we analyze three stages of the product life-cycle including low volumes during

product introduction, peak demand, and eventual decline toward the end of the life-cycle. Parts of the

simulation model have been adopted by a major North-American automotive OEM as part of a scenario

analysis tool for strategic supply network design and analysis. The simulation results show that

performance of a system as a whole deteriorates when there is a step-change in the life-cycle demand.

While restriction in production capacity does not significantly impact the bullwhip effect, it increases

the net stock amplification significantly for the supply chain setting under consideration. Furthermore,

a number of important managerial insights are presented based on sensitivity analysis of interaction

effect of capacity constraints with other supply chain parameters.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The bullwhip effect is one of the most widely investigated
phenomena in the modern day supply chain management
research. It is the tendency to see an increase in variability in the
replenishment orders with respect to true demand due to distor-
tion in the demand information as we move upstream in the
supply chain. While Lee et al. (1997) first introduced the term
‘‘bullwhip effect’’ to explain this phenomenon, it was first
described by Forrester (1961) to demonstrate the demand and
variance amplification in an industrial system. His idea has been
studied further and illustrated through the ‘‘Beer Distribution
Game’’—a simulation based teaching tool to explain the economic
dynamics of stock management problem (Sterman, 1989). Lee et al.
(1997) identified the following four reasons for the bullwhip
problem: demand signal processing, the rationing game, order batch-

ing, and price variations. Since then, there have been a significant
number of studies on this problem with respect to all the major
causes of the bullwhip effect (Chen et al., 2000a; Dejonckheere
et al., 2003; Disney and Towill, 2003; Moyaux et al., 2007; Boute
and Lambrecht, 2007). Recently, third-party warehousing has also

been cited as one of the causes of the bullwhip effect (Duc et al.,
2010).

Classical inventory management models for multi-echelon sup-
ply chains require that the product demand process be fairly smooth
in order to make it mathematically tractable (Williams, 1982). In
comparison, simulation models are well suited to study complex
supply chains with non-smooth demand process (e.g., lumpy
demand during life-cycle) and allows for transient analysis. It is
therefore widely used in the bullwhip effect analysis as well (Disney
et al., 2004a; Wanphanich et al., 2010; Coppini et al., 2010). While
simulation based games like ‘‘Beer Game’’ have helped researchers
and practitioners understand dynamics of order and inventory
fluctuations in a supply chain (SC) system, very few examples can
be found that incorporate the life-cycle demand aspects into those
dynamics (Disney et al., 2004b; Reddy and Rajendran, 2005). It is a
well-known fact that every product has its own life-cycle demand
curve—slow market growth at introduction, rapid growth during
peak, and sluggish demand during saturation (maturity) or decline
phase (Mahajan and Muller, 1979). Kaipa et al. (2006) discuss the
nervousness of demand planning and its impact on bullwhip in an
electronic SC in the face of changing demand at various life-cycle
phases. Hoberg et al. (2007) also argue that the conventional
approach of using a lower smoothing constant in forecasting will
take a significantly long time to detect step-changes in demand.

While the notion of a product life-cycle is not new and some-
what witnessed in all industries (e.g., see Kaipa et al., 2006; Berry
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and Towill, 1982), the ‘‘signature’’ of the production life-cycle is
unique to industries that produce complex engineered products
(e.g., automobiles). During the first few months of introduction,
the vehicle is typically produced at low volume to address any
production quality and supply issues. Given the complexity of the
assembly and other production facilities, it is not practical to
change the production volume continuously due to the need to
‘‘balance’’ the assembly line and the supply chain. Instead, the
production volume typically undergoes step changes at distinct
epochs as the demand picks up for the product in the market
place, e.g., in the form of additional production shifts and step
changes in volume per shift (Kisiel, 2008). For example, most
original equipment manufacturer (OEM) automotive products in
the North-American market undergo a four to five year life-cycle
(with some product ‘‘refreshing’’ every year), with demand typi-
cally waning after couple of years due to introduction of more
competitive products in the market place with better functions,
features, and option content.

These life-cycles however tend to be different from industry to
industry, with complex engineered product typically experiencing
longer life-cycles due to complexity, costs, and risks associated
with product development and launch. Another characteristic, at
least typical of the North-American automotive OEMs, is that they
predominantly operate in a ‘‘build to stock’’ production mode
rather than a ‘‘build to order’’ mode. This is also attributable to
complexity of the product, production facilities, challenges asso-
ciated with coordination of the supply chains to support the ‘‘take
rates’’ for the different options/features, and the long order-to-
delivery lead-times. Accordingly, the companies rely heavily on
dynamic pricing strategies (in the form of dealer or customer
incentives) and marketing to influence demand while adjusting
supply in the long-run to match demand. Hence, this study
focuses more on modeling and control of the bullwhip effect in
the supply networks as a function of fluctuations in the OEM
final-assembly (FA) line production volume rather than end
customer ‘‘demand’’. Fig. 1 shows a typical production pattern
life-cycle for an automobile. In such a case, adopting a ‘‘one size
fits all’’ production and inventory management policy results in a
chaotic situation especially in multi-echelon SC settings. It is
necessary to investigate how inventory and order variances
propagate as a product passes through different phases of the
life-cycle. Capturing such transient trajectories of different SC
performance measures will be very helpful especially in designing
or configuring a SC network for future products, such as the
automotive industry example addressed in this paper.

The unique contributions of this paper are several-fold. First,
we extend the work of Chen et al. (2000b) and present analytical
expressions of the bullwhip effect and net-stock amplification for
OEM using a different sequence of events in a replenishment
period. These results confirm the bullwhip effect results devel-
oped in the literature for slightly different ordering policy. The

analysis is then extended via simulation to a three-echelon SC
consisting of OEM, Tier 1, and Tier 2 suppliers. Through simula-
tion based models, we investigate the transient and steady-state
impact of step-changes in OEM production volume on the bull-
whip effect and net stock amplification. These analyses are
performed for both with and without capacity constraint scenar-
ios. For ease of presentation, we approximate different phases of
the product life-cycle with three stationary phases (labeled,
‘‘introduction’’, ‘‘peak’’, and ‘‘end-of-life’’ stages) corresponding
to the three stages of Fig. 1. Various sensitivity analyses are
performed to explore the impact of interaction between capacity
constraint and other SC parameters on the bullwhip effect and
inventory variance (or net-stock amplification). Several insights of
managerial importance are drawn based on the sensitivity
analyses.

The remainder of the paper is organized as follows. A brief
review of related literature on the bullwhip effect analysis is
presented in Section 2. Section 3 describes the model and the
undertaken SC policies. In Section 4, we present the analytical
expression for inventory variance and bullwhip effect (from the
literature) for OEM. Section 5 describes the simulation model and
sensitivity analysis results for a three-echelon SC with and with-
out capacity constraints. Finally, conclusions and directions for
future research are outlined in Section 6.

2. Review of related literature

The bullwhip effect related research in supply chains has a
long tradition which can be broadly divided into three streams.
The first stream of research focuses on determining the impact of
forecasting techniques employed by SC players on the bullwhip
effect. Chen et al. (2000a) have analytically derived a quantitative
measure of the bullwhip effect and demonstrated via simulation
the impact of forecasting, lead-time and information. The authors
used simple moving average (MA) forecasting techniques to
determine the lower bounds of the bullwhip effect in simple
single and multi-echelon supply chains. They later extended their
work by studying impact of other forecasting techniques, in
particular exponential smoothing (ES) under both auto-correlated
demand and demand with linear trend (Chen et al., 2000b). Zhang
(2004) compared the bullwhip effect under three different fore-
casting methods for a simple inventory system with a first-order
autoregressive, AR(1), demand process. Zhang (2004) found the
minimum mean square error (MMSE) to be the optimal forecast-
ing method for stable AR(1) demand processes. In comparison, the
MA or ES methods were more flexible and adapted better to the
demand shifts over time. Disney et al. (2006) have developed
exact methods to quantify the bullwhip effect for different
demand processes including AR, MA, and auto-regressive moving
average (ARMA). Holweg et al. (2005) discussed the challenges in
implementing a Build-to-Order (BTO) production system given
current SC network structures, in light of the bullwhip effect and
scheduling issues especially in automotive industry. Hosada and
Disney (2006) presented a control theoretic approach to quantify
the bullwhip effect under the MMSE forecasting. The authors also
derived an analytical expression for another important perfor-
mance measure of supply chains, the ‘‘net-stock amplification’’. It
is defined as the ratio of the net-stock variance over the variance
of demand, which, just like the bullwhip effect, gets worse as we
move up the chain. In addition to AR(1), attempts have been made
to determine an upper bound for the bullwhip effect for two stage
SC with first and second order autoregressive demand process
(Luong, 2007; Luong and Phien, 2007). Duc et al. (2008) analyzed
on a two-stage SC including one supplier and one retailer with a
mixed autoregressive-moving average model, ARMA(1, 1) for
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Fig. 1. Typical production pattern life-cycle for an automobile with introduction,

peak, and end-of-life stages.
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