Molecular design and luminescence of boron difluoride benzoylacetonates

Elena V. Fedorenko*, Anatolii G. Mirochnik, Anton Yu. Belolipetsv

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation

A R T I C L E   I N F O

Keywords:
β-diketonatoboron difluoride (boron difluoride β-diketonate)
Luminescence
Excimer
Crystal structure
Aggregation
Intermolecular interaction

A B S T R A C T

Two groups of compounds differing in the crystal supramolecular architecture and luminescence properties have been identified in a series of boron difluoride benzoylacetonates. In the case of the first group, the luminescence spectra of saturated solutions are bathochromically shifted relative to those of crystals. Molecules of the compounds of the first group are organized into infinite stacks with just one type of overlapping. Quantum-chemistry simulation demonstrates that the geometry of dimers in a crystal, unlike that in saturated solutions is not optimal. J-aggregates composed of dimers of the geometry similar to the optimal one are formed in crystals of the compounds of the second group. The luminescence spectra of saturated solutions and crystals of the second group compounds are identical.

1. Introduction

Recently, a substantial increase of the number of publications devoted to studies of physical–chemical properties of boron difluoride β-diketonates [1–7] has been observed. First of all, this fact is related to unique luminescence and photochemistry properties of the above rather interesting class of compounds: intensive luminescence of solutions and crystals over the whole visible and near-IR spectral range, the ability to form excimers [8–10] and exciplexes [11,12], size-dependent [13] and mechanochromic [14,15] properties. Boron difluoride β-diketonates are characterized by an intensive luminescence in the both solutions and crystals. In saturated solutions and a most of crystals of these compounds, one observes an excimer luminescence, which allows producing different emission color combinations using just one lumiphor. For example, a solution containing monomer and excimer forms of boron difluoride dibenzoylmethanate is characterized by white luminescence [8]. In view of this, an urgent task consists in studies of the effect of aggregation processes on luminescence properties of boron difluoride β-diketonates.

Presently, a substantial volume of X-ray structural studies allows revealing the effect of supramolecular architecture on optical properties [16–24]. In particular, the effect of the crystal structure on mechanochromic properties [25] and luminescence [26] of crystals was revealed for boron difluoride dibenzoylmethanates.

The present work was devoted to comparative studies of luminescence properties of concentrated solutions of a series of boron difluoride benzoylacetonates (Scheme 1).

2. Experimental

2.1. Measurements

Absorption spectra of solutions were registered using a Shimadzu-UV2550 spectrometer. The excitation and luminescence spectra were registered using a Shimadzu-RFS501 spectrophotometer. The concentrated solutions spectra were registered at a frontal cell positioning in a cell of a size of 10 × 1 mm. The measurements of fluorescence lifetime by time-correlated single-photon counting (TCSPC) were performed using a FluoTime 200 device (PicoQuant) with an LDH-P-C-375 (370 nm) excitation source and a TimeHarp device as the SPC controller. The lifetime data were analyzed using the FluorFit 4.0 software from PicoQuant.

2.2. Materials

Chloroform, dichloromethane, and 1,2-dichloroethane were purchased from Roskhimreaktiv and used as received. Polyethylene (PE) powder (low density, 500 µm) was purchased from Alfa Aesar. Benzoylacetonates of boron difluoride were prepared and purified according to: 1 – [27], 2–6 – [28], 7 – [29] (SM 1).

PE films doped with the compound 1 were prepared according to [30]. PE powder and the complex 1 were mixed thoroughly and compacted using a hydraulic press (p = 8 MPa, T = 130 °C).

* Corresponding author.
E-mail address: gev@ich.dvo.ru (E.V. Fedorenko).

https://doi.org/10.1016/j.jlumin.2017.12.071
Received 4 April 2017; Received in revised form 14 December 2017; Accepted 30 December 2017
Available online 02 January 2018
0022-2313/ © 2018 Elsevier B.V. All rights reserved.
25 nm (Fig. 1). In the excitation spectrum of the solution of benzoylacetonate (C = 0.6 mol L−1) is bathochromically shifted relatively to that of crystals by 32 nm. The spectrum of luminescence of the saturated solution (C = 0.5 mol L−1) is hypsochromically shifted relative to the spectra of crystals. Among organic luminophors, one can single out the substance benzoylacetonate whose fluorescence properties of the saturated solution and crystals was studied by the stationary and time-resolved spectroscopy methods. The maximum of the spectrum of monomer luminescence of the diluted solution (10−5 mol L−1) was observed at 395 nm, τ = 0.5 ns. At the concentration increase up to 10−3 mol L−1, the luminescence spectrum shifts to 428 nm and the luminescence decay becomes two-exponential (Table 1), whereas at further increase of the concentration of 1 one observes the intensity increase and bathochromic shift of the long-wavelength band in the luminescence spectrum to 470 nm. In the time-resolved spectrum, the contribution of the short-lived component (0.5–1 ns) decreases while the one of the long-lived component increases, that indicates to excimer formation. For the saturated solution (0.6 mol L−1), the luminescence kinetics is two-exponential, whereas lifetimes (10.0 and 23.1 ns) correspond to excimer luminescence. Assumingly, the formation of excimers of different structures occurs in the concentrated solution of 1.

The data of time-resolved spectroscopy corroborate the formation of the two types of excimers in the concentrated solution of 1. As seen from the decay diagrams of the samples (Fig. 1), the luminescence kinetics is two-exponential, whereas lifetimes (10.0 and 23.1 ns) correspond to excimer luminescence.

### Results and discussion

#### 3.1. Excimer formation in saturated solution of boron difluoride benzoylacetonate

An anomalous bathochromic shift of the maximum of luminescence spectra of solutions relative to crystals was found at studies of luminescence properties of the saturated solution of boron difluoride benzoylacetonate. As a rule, the luminescence spectra of solutions of organic luminophors and, in particular, boron difluoride β-diketonates are hypsochromically shifted relative to the spectra of crystals. Among organic luminophors, one can single out the substance 1, for which the spectrum of luminescence of the saturated solution (C = 0.6 mol L−1) is bathochromically shifted relatively to that of crystals by 25 nm (Fig. 1). In the excitation spectrum of the solution of 1, one observes a single narrow band with a maximum at 380 nm, whereas the excitation spectrum of crystals has a more complex structure: aside from the band at 380 nm, the bands at 345, 281, and 244 nm are present in the spectrum short-wavelength range (Fig. 1).

<table>
<thead>
<tr>
<th>C, mol L−1</th>
<th>λmax, nm</th>
<th>τ, ns (f, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10−5</td>
<td>395</td>
<td>0.5 (100)</td>
</tr>
<tr>
<td>10−3</td>
<td>428</td>
<td>0.8 (75.18), 7.3 (24.82)</td>
</tr>
<tr>
<td>2·10−3</td>
<td>470</td>
<td>1.0 (13.18), 13.9 (86.98)</td>
</tr>
<tr>
<td>6·10−3</td>
<td>470</td>
<td>10.0 (33.18), 23.1 (66.82)</td>
</tr>
<tr>
<td>Crystal</td>
<td>440</td>
<td>10.5 (100)</td>
</tr>
</tbody>
</table>

* Fractional intensities of the positive decay components.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات