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a b s t r a c t

One of the major drawbacks in rail track investments is the high level of uncertainty in maintenance,
renewal and unavailability costs for the Infrastructure Managers (IM) during the life-cycle of the infra-
structure. Above all, rail track geometry degradation is responsible for the greatest part of railway
infrastructure maintenance costs. Some approaches have been tried to control the uncertainty associated
with rail track geometry degradation at the design stage, though little progress has improved the
investors’ confidence. Moreover, many studies on rail track life-cycle cost modelling tend to forget the
dynamic perspective in uncertainty assessments and do not quantify the expected reduction of the
uncertainty associated with degradation parameters as more inspection data is collected after operation
starts.

In this paper, a Bayesian model to assess rail track geometry degradation is put forward, building up
a framework to update the uncertainty in rail track geometry degradation throughout its life-cycle. Using
inspection data from Lisbon-Oporto line, prior probability distributions are fitted to the model param-
eters quantifying the associated uncertainty at the design stage, and then they are sequentially updated
as more inspection data becomes available when operation starts. Uncertainty reduction in geometry
degradation parameters is then assessed by computing their posterior probability distributions each time
an inspection takes place.

Finally, the results show that at the design stage, the uncertainty associated with degradation rates is
very high, but it reduces drastically as more inspection data is collected. Significant impacts on the
definition of maintenance cost allocation inside railway business models are discussed, especially for the
case of Public and Private Partnerships. Moreover, potential impacts of this methodology in maintenance
contracts are highlighted. For the case of a new infrastructure, it is proposed that maintenance costs
assessments related to track geometry degradation are no longer assessed at the design stage based only
on the prior probability distributions of the degradation model parameters, but renegotiated instead
after a ‘warm-up’ period of operation based on their posterior probability distributions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A recent European research project (INNOTRACK) while con-
ducting a survey to InfrastructureManagers (IM) concluded that risk
analysis is not widely considered in life-cycle cost calculations and
identified it as an area of improvement in life-cycle cost calculations
(INNOTRACK, 2007). Moreover, several Best Practice Studies con-
ducted by the Office of Rail Regulation (ORR) consisting of interna-
tional visits to IM reported an expected decrease of existing
maintenance costs in the order of 20e30% through the development
of a risk-based approach to infrastructuremaintenance (ORR, 2008).

Considering that maintenance costs for rail track subsystem may
represent 55% of total maintenance costs in the case of high-speed
line system (López-Pita, Teixeira, Casas, Bachiller, & Ferreira,
2008), more research concerning rail track degradation may bring
more cost-effective tools and ideas in rail track management,
increasing ultimately railway transport competitiveness.

Previous research works have focused in maintenance strategies
to optimize ballast tamping and renewal actions from a life-cycle
cost perspective (Zhao, Chan, Roberts, & Stirling, 2006), without
focussing on the uncertainty in degradation model parameters.
A recent work included uncertainty aspects in life-cycle cost esti-
mations for the rail component assigningprobability distributions to
reliability parameters (Patra, Söderholm,&Kumar, 2009). In termsof
track geometry degradation, some studies tried to predict deterio-
ration rates at the design stage based on the infrastructure features
andoperating conditions throughmultiple linear regressionorother
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data mining technique, though no reasonable model was achieved
(Esveld, 2001 on thework carried out by the Office for Research and
Experiments (ORE) committee D 161).

Having said that, this paper puts forward a Bayesian model for
rail track geometry degradation in order to assess the evolution of
uncertainty through the life-cycle of the infrastructure. The model
is run using inspection data from the main Portuguese rail line
(Lisbon-Oporto line).

The Lisbon-Oporto line has a total length of 337 km, and it has
been under a renewal process since 1996. The renewal works per-
formed included a thorough improvement of the track bed bearing
capacity and a complete renewal of track superstructure, incorpo-
rating monoblock concrete sleepers spaced by 60 cm each, rail UIC
60 and Vossloh fastening system with plastic railpads ZW 687
(vertical stiffness 450 kN/mm). The sample analyzed in the present
study includes a series of inspection data of 1725 renewed track
sections (200 m long). Unfortunately, reliable inspection data is
only available from 2001 up to now. In terms of inspection condi-
tions, it is conducted four times a year and in terms of operating
conditions, this line has passenger train-sets running at
a maximum speed of 220 km/h and freight train-sets running at
80 km/h. Information on infrastructure features such as the loca-
tion of switches, bridges, stations and plain track, layout percent-
ages in the track section (curves, spiral and tangent), curve radius
and cant were collected for each track section.

2. Bayesian idea

Before the late 1980s, Bayesian approaches were only consid-
ered as interesting alternatives to the ‘classical’ statistical theory in
stochastic modelling. However, as more powerful computers
became widely accessible and as statisticians (re)discovered
Markov Chain Monte Carlo (MCMC) methods in the early 1990s,
Bayesian statistics suddenly became the latest fashion in modelling
throughout all areas of science.

In fact, MCMC methods brought the generalization needed in
the calculation of the posterior distribution, in particular for cases
with non conjugate priors in which asymptotic methods do not
apply. Physicists were familiar with MCMC methodology from the
1950s, at first through Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (1953) and later by Geman and Geman (1984). Never-
theless, the realization that Markov Chains could bring this
generalization in Bayesian statistics only came with Gelfand and
Smith (1990) and in more practical terms when a dedicated BUGS
software (Bayesian Using Gibbs Sampling) became available (Lunn,
Thomas, Best, & Spiegelhalter, 2000). For more details on the
history of MCMC please see Robert and Casella (2008).

In short terms, Bayesian approaches diverge from classical
statistical theory in the fact that they consider parameters as
random variables that follow a prior distribution. This prior distri-
bution is then combined with the traditional likelihood to obtain
the posterior distribution of the parameters of interest. This
combination of prior and data information is processed using the
so-called Bayes’ rule, providing a probabilistic mechanism of
learning from data. Therefore, the calculation of the posterior
distribution f ðqjxÞ of the parameters q given the observed data x can
be computed as:

f ðqjxÞ ¼ f ðxjqÞ$f ðqÞ
f ðxÞ ff ðxjqÞ$f ðqÞ (2.1)

The posterior distribution combines the prior distribution f(q) of
the parameters q and the likelihood f ðxjqÞ. The denominator in the
expressionabove is themarginaldistributionof thedata f(x) and it can
becomputedby integrating thenumerator in theparametric spaceQ:

f ðxÞ ¼
Z
Q

f
�
xjq0�f �q0�dq0 (2.2)

Usually the target posterior distribution is not analytically
tractable, though in some special cases (where priors are conjugate
distributions for the likelihood) the resulting posterior distribution
belongs to the same distributional family of the prior. In such cases,
the parameters that define the posterior distribution can be easily
calculated based on the prior parameters and some statistics from
the data. In the general case (for non conjugate priors) we need
MCMC simulation to assess the posterior distribution.

We can assess the posterior distribution f ðqjxÞ by sampling from
a target distribution that is equal to f ðxjqÞ$f ðqÞ up to a normalizing
constant f(x). MCMC method is the appropriate algorithm to
generate samples while exploring the parametric space Q.
Although for finite parametric spaces, the idea to introduce Markov
Chains may seem intuitive, for continuous parametric spaces this
idea implies the definition of a Kernel function to represent the
conditional density of q(iþ1) given the value of q(i). The idea is to
build and simulate a Markov Chain fqðjÞ; j ¼ 1;2;.;Ng in a way
that it converges in distribution to the posterior distribution f ðqjxÞ,
meaning that the equilibrium distribution of the selected Markov
Chain is the posterior distribution. Many MCMC algorithms have
been developed to perform in such a way: the two most popular
MCMCmethods are theMetropolis-Hastings algorithm (Metropolis
et al., 1953) and the Gibbs sampling (Geman & Geman, 1984). We
will not cover them in detail and redirect the reader to Andrieu,
Freitas, Doucet, & Jordan (2003), Bernardo (2003) or any intro-
ductory Bayesian statistical book (Paulino, Turkman, & Murteira,
2003), or alternatively to a practical insight in WinBUGS
(Ntzoufras 2009).

Having introduced the Bayesian idea, we may divide the
Bayesian approach into four stages: model building or specification,
calculation of the posterior distribution (with the appropriate
method of computation), analysis of the posterior distribution and
conclusions (inference concerning the problem under consider-
ation). Note that in the first stage (model building), we need to
identify the main variable of the problem, find a distribution that
adequately describes it (while including other variables that may
influence it) and specify the prior distribution and the likelihood of
the model. Moreover, a very important step is specifying the prior
distribution using a noninformative (or vague prior) or incorpo-
rating preceding known information, using old samples from
problems under the same boundary conditions or from expert
judgement. This process is usually called elicitation of the priors. In
the next sections, wewill follow as strict as possible, the four stages
mentioned above to describe the Bayesian approach, but let us first
discuss rail track geometry phenomenon.

3. Rail track geometry degradation

Track geometry degradation is usually quantified by five track
defects: the longitudinal levelling defects, the horizontal alignment
defects, the cant defects, the gauge deviations and the track twist.
Although many infrastructure managers tend to sum up all these
defects into a track quality index which is typically function of the
standard deviations of each defect and train permissible speed (as
reported in El-Sibaie & Zhang (2004) or Zhao et al. (2006)), the
standard deviation for the short wavelength (3e25 m) of longitu-
dinal levelling defects is still regarded as the crucial parameter for
planned maintenance decisions as it is confirmed by a recent guide
on best practices for optimum track geometry durability (UIC,
2008). Longitudinal levelling defects are defined as the geomet-
rical error in the vertical plane, measured in millimetres from the
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