Accepted Manuscript

Perceptual Changes with Monopolar and Phantom electrode stimulation

Silke Klawitter, David M. Landsberger, Andreas Büchner, Waldo Nogueira

PII: S0378-5955(17)30307-6
DOI: 10.1016/j.heares.2017.12.019
Reference: HEARES 7477

To appear in: Hearing Research

Received Date: 29 June 2017
Revised Date: 17 December 2017
Accepted Date: 23 December 2017


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Perceptual Changes with Monopolar and Phantom electrode stimulation

Silke Klawitter¹, David M. Landsberger³, Andreas Büchner², Waldo Nogueira²

¹Medical University Hannover, Hannover, Germany
²Medical University Hannover, Cluster of Excellence “Hearing4all”, Hannover, Germany
³New York University School of Medicine, New York, NY USA

Abstract

Phantom electrode (PE) stimulation is achieved by simultaneously stimulating out-of-phase from two adjacent intra-cochlear electrodes with different amplitudes. If the basal electrode stimulates with a smaller amplitude than the apical electrode of the pair, the resulting electrical field is pushed away from the basal electrode producing a lower pitch. There is great interest in using PE stimulation in a processing strategy as it can be used to provide stimulation to regions of the cochlea located more apically than the most apical contact on the electrode array. The result is that even lower pitch sensations can be provided without additional risk of a deeper insertion. However, it is unknown if there are perceptual differences between monopolar (MP) and PE stimulation other than a shift in place pitch. Furthermore, it is unknown if the effect and magnitude of changing from MP to PE stimulation is dependent on electrode location. This study investigates the perceptual differences (including pitch and other sound quality differences) at multiple electrode positions using MP and PE stimulation using both a multidimensional scaling procedure (MDS) and a traditional scaling procedure.

10 Advanced Bionics users reported the perceptual distances between 5 single electrode (typically 1, 3, 5, 7, and 9) stimuli in either MP or PE (σ=0.5) mode. Subjects were asked to report how perceptually different each pair of stimuli were using any perceived differences except loudness. Subsequently, each stimulus was presented in isolation and subjects scaled how “high” or how “clean” each sounded.

Results from the MDS task suggest that perceptual differences between MP and PE stimulation can be explained by a single dimension. The traditional scaling suggests that the single dimension is place pitch. PE stimulation elicits lower pitch perceptions in all cochlear regions. Analysis of Cone Beam Computer Tomography (CBCT) data suggests that PE stimulation may be more effective at the apical part of the cochlea. PE stimulation can be used for new sound coding strategies in order to extend the pitch range for cochlear implant (CI) users without perceptual side effects.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات