Author’s Accepted Manuscript

Neurovascular unit remodelling in the subacute stage of stroke recovery

Evelyn M.R. Lake, Paolo Bazzigaluppi, James Mester, Lynsie A.M. Thomason, Rafal Janik, Mary Brown, JoAnne McLaurin, Peter L. Carlen, Dale Corbett, Greg J. Stanisz, Bojana Stefanovic

PII: S1053-8119(16)30480-3
DOI: http://dx.doi.org/10.1016/j.neuroimage.2016.09.016
Reference: YNIMG13443

To appear in: NeuroImage

Received date: 10 June 2016
Revised date: 31 August 2016
Accepted date: 8 September 2016

Cite this article as: Evelyn M.R. Lake, Paolo Bazzigaluppi, James Mester Lynsie A.M. Thomason, Rafal Janik, Mary Brown, JoAnne McLaurin, Peter L Carlen, Dale Corbett, Greg J. Stanisz and Bojana Stefanovic, Neurovascular unit remodelling in the subacute stage of stroke recovery, NeuroImage http://dx.doi.org/10.1016/j.neuroimage.2016.09.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Neurovascular unit remodelling in the subacute stage of stroke recovery
Evelyn MR Lakea, BSc, Paolo Bazzigaluppib,c, PhD, James Mestera, BSc, Lynsie AM Thomasonb, Rafal Janika, MSc, Mary Brownd, JoAnne McLaurind, PhD, Peter L Carlenc,e, MD, Dale Corbettf,g, PhD, Greg J Stanisza,b,h, PhD, Bojana Stefanovica,b,g,i, PhD

aDepartment of Medical Biophysics, University of Toronto, ON, Canada
bPhysical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
cNeurobiology, Toronto Western Research Institute, Toronto, ON, Canada
dDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
eDepartment of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
fFaculty of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
gHeart and Stroke Foundation Centre for Stroke Recovery, Canada
hDepartment of Neurosurgery and Paediatric Neurosurgery, Medical University Lublin, Lublin, Poland
iNeuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada

Corresponding author. The Anlyan Center, 300 Cedar Street New Haven CT, 06520-8043, Department of Radiology and Biomedical Imaging, evelyn.lake@mail.utoronto.ca, evelyn.lake@yale.edu

Abstract
Brain plasticity following focal cerebral ischemia has been observed in both stroke survivors and in preclinical models of stroke. Endogenous neurovascular adaptation is at present incompletely understood yet its potentiality may improve long-term functional outcome. We employed longitudinal MRI, intracranial array electrophysiology, Montoya Staircase testing, and immunofluorescence to examine function of brain vessels, neurons, and glia in addition to forelimb skilled reaching during the subacute stage of ischemic injury progression. Focal ischemic stroke (~100mm3 or ~20\% of the total brain volume) was induced in adult Sprague-Dawley rats via direct injection of endothelin-1 (ET-1) into the right sensori-motor cortex, producing sustained impairment in left forelimb reaching ability. Resting perfusion and vascular reactivity to hypercapnia in the peri-lesional cortex were elevated by approximately 60\% and 80\% respectively seven days following stroke. At the same time, the normal topological pattern of local field potential (LFP) responses to peripheral somatosensory stimulation was abolished and the average power of spontaneous LFP activity attenuated by approximately 50\% relative to the contra-lesional cortex, suggesting initial response attenuation within the peri-infarct zone. By 21 days after stroke, perilesional blood flow resolved, but peri-lesional vascular reactivity remained elevated. Concomitantly, the LFP response amplitudes increased with distance from the site of ET-1 injection, suggesting functional remodelling from the core of the lesion to its periphery. This notion was further buttressed by the lateralization of spontaneous neuronal activity: by day 21, the average ipsi-lesional power of spontaneous LFP activity was almost twice that of the contra-lesional cortex. Over the observation period, the peri-lesional cortex exhibited increased vascular density, along with neuronal loss, astrocytic activation, and recruitment and activation of microglia and macrophages, with neuronal loss and inflammation extending beyond the peri-lesional cortex. These findings highlight the complex relationship between neurophysiological state and behaviour and provide evidence of highly dynamic functional changes in the peri-infarct zone weeks following the ischemic insult, suggesting an extended temporal window for therapeutic interventions.

Keywords: focal ischemia, endothelin-1, preclinical stroke modelling, magnetic resonance imaging, arterial spin labelling, Montoya reaching task, intra-cranial electrophysiology, immunofluorescence
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات