Accepted Manuscript

Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods

PII: S0928-0987(17)30499-2
DOI: doi: 10.1016/j.ejps.2017.09.003
Reference: PHASCI 4197

To appear in:

Received date: 15 June 2017
Revised date: 1 September 2017
Accepted date: 4 September 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods

P. Koullapisa, S. C. Kassinosa, J. Muelab, C. Perez-Segarrab, J. Rigolab, O. Lehmkuhle, Y. Cuid, M. Sommerfelde, J. Elcnerf, M. Jichaf, I. Saveljicg, N. Filipovicg, F. Lizalf, L. Nicolaouh,∗

aDepartment of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
bHeat and Mass Transfer Technological Centre, Universitat Politècnica de Catalunya, Terrassa, Spain
cBarcelona Supercomputing Center, Barcelona, Spain
dChair of Applied Mechanics, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
eInstitute of Process Engineering, Otto von Guericke-University Magdeburg, Halle, Germany
fFaculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
gFaculty of Engineering, University of Kragujevac, Kragujevac, Serbia
hDepartment of Mechanical Engineering, Imperial College London, London, UK

Abstract

Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future.

Keywords: inhaled drug delivery, respiratory airways, regional deposition, computational fluid particle dynamics, benchmark case

∗Corresponding author at: Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK. Tel: +44 (0)20 7595 7112.
Email address: laura.nicolaou@imperial.ac.uk (L. Nicolaou)
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات

ISI Articles
مرجع مقالات تخصصی ایران