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In this paper we employ regime volatility models to describe time dependency in petroleum markets. Using a
sample of NYMEX and ICE futures contracts, we establish the existence of a regime process and link this
process tomarket fundamentals. This formulation results in two distinct states: a highly persistent conditional
volatility process, characterised by long memory and low sensitivity to market shocks, and a relatively short-
lived nonstationary process with less memory but higher sensitivity to shocks. Moreover, to investigate the
relationship between disequilibrium and volatility of oil futures across high and low volatility regimes we use
augmented regime GARCH models to address in a realistic way the potential diverse response of volatility to
forward curve shocks. The performance of these models is compared to benchmarks, using both statistical
tests and risk management loss functions. To test the robustness of the forecasting strategies, we also perform
a reality check employing the stationary bootstrap approach. The findings of this paper have important
implications for decision making concerning trading and risk management, as well as energy market
operations, such as refining and budget planning, by providing valuable information on the oil price volatility
dynamics and the ability to predict risk.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the volatile world of energymarkets, quantifying andmitigating
price risk presents a number of challenges due to the time-
dependence in volatility, non-linear dynamics and heavy tails in the
distribution of oil returns. Petroleum price volatility has always been
at the core of economic research agenda not only because of its effect
on the cash flows of oil-related businesses, but also due to the far-
reaching implications of oil price uncertainty on the macroeconomy
(Hamilton, 2003 and Chen and Chen, 2007) and the financial markets
(Driesprong et al., 2008 and Aloui and Jammazi, 2009). It is not
surprising therefore that in the energy economics literature there is a
plethora of empirical studies examining the issue of modelling
volatility and risk management.

Traditionally, the family of Autoregressive Conditional Hetero-
scedasticity (ARCH)models – introduced by Engle (1982) – have been
widely used to describe the conditional volatility of oil prices, due to
their flexibility. However, empirical research suggests that in the
presence of asymmetries, fat tails and time-dependent higher order

moments, the standard Generalised ARCH model of Bollerslev (1986)
is not appropriate and thus, numerous extensions have been
developed in the literature either by assuming different distributions
of the error structure or by adding asymmetric terms, such as leverage
effects, in the variance process. Kang et al. (2009) for instance,
compare the forecasting ability of different GARCHmodels in theWTI,
Brent and Dubai crude oil futures markets and find that Fractionally
Integrated GARCH processes provide more accurate volatility fore-
casts, concluding that persistence and long memory are essential
elements of energy markets volatility. Agnolucci (2009) investigates
the market volatility of WTI futures and finds that extensions of
GARCH models with asymmetric effects and different error distribu-
tions out-perform implied volatility models’ predictive accuracy. Fan
et al. (2008) show that the assumption of normality leads to
underestimation of risk and GARCH models based on the Generalised
Error Distribution (GED) produce more reliable forecasts compared to
ordinary GARCH models. Hung et al. (2008) also highlight the
importance of selecting the appropriate distribution in a GARCH
context and find that crude oil and oil products' Value-at-Risk (VaR) is
better captured by fat-tail distributions. Overall, the findings of this
study imply that the assumption of fat tails plays an important role in
VaR estimates since it directly affects the required quantiles. Costello
et al. (2008) on the other hand, employ a GARCH filter and rely on
historical simulations (semi-parametric GARCH) to forecast VaR
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whereas Huang et al. (2009) employ an alternative CAViaR (Con-
ditonal Autoregressive VaR) technique based on regression quantiles.
Other studies testing different variants of GARCH models include
Duffie and Gray (1995), Sadorsky (2006), Cheong (2009) and Wei
et al. (2010).

A major shortcoming of GARCH models is that they induce a high
degree of persistence in shocks, that falsely implies high predictability
but, in essence reflects regime shifts or structural breaks in the
volatility process (Lamoureux and Lastrapes, 1990). This means that a
regime-switching GARCH model may be more suitable for modelling
volatility particularly in the energy markets where structural breaks
are quite common.1 Another advantage of a regime GARCH process is
its ability to deal with fat-tails (see Haas et al., 2004a, 2004b for more
details and derivation of higher moments of mixed normal distribu-
tions); this is very important for modelling volatility in the oil futures
markets where demand shocks result in an asymmetrically higher
volatility when the market is at the steep part of the supply stack.

In addition, oil market volatility is characterised by different
dynamics under different market conditions. For instance, Fong and
See (2002, 2003) document strong evidence of regime switching in
the temporal volatility dynamics of oil futures, consistent with the
theory of storage; an increase in backwardation is more likely to
increase regime persistence in the high volatility state, due to low
inventories. Alizadeh et al. (2008) employ a Markov Regime Switch-
ing (MRS) approach for determining optimum hedge ratios in NYMEX
energy futures markets. In a low variance regime, error correction
coefficients are in accordance with convergence towards a long-run
equilibrium relationship, while the high variance state is character-
ised by insignificant speed of adjustment coefficients, which effec-
tively results in a widening of the basis thus explaining the high
variance regime; hence, the adjustment process undergoes regime
shifts and does not behave uniformly to shocks to equilibrium across
different states. Another study by Vo (2009) combined the concept of
regime switching with that of stochastic volatility to forecast the
dynamics of WTI crude oil. The author finds that the simple MRS
model captures better the in-sample dynamics in terms of mean
absolute errors whereas out-of-sample, stochastic volatility with
regime shifts is favoured.

Building on these previous studies, this paper investigates the
volatility dynamics for the NYMEX WTI crude and heating oil as well
as the ICE Brent crude and gas oil futures contracts. In doing so, it
contributes to the existing literature in a number of ways. First, we
employ various volatility regimemodels, to accommodate some of the
stylised features of the oil markets such as volatility clustering, non-
normality, time-varying skewness and excess kurtosis. In particular,
we consider the Mix (distribution) GARCH and the MRS GARCH
models based on the mixed conditional heteroscedasticity models of
Haas et al. (2004a) and Alexander and Lazar (2006) and the Markov
model of Haas et al. (2004b), respectively. Our study is different from
the above mentioned research in the sense that we provide a
thorough empirical application of the provided framework in the
energy markets. Although volatility modelling and forecasting in a
regime framework has been widely documented in equity and foreign
exchange markets (see Marcucci, 2005; Li and Lin, 2004; Giannikis
et al., 2008), few studies have analysed in depth the nature of the
volatility regimes of oil futures prices and the forecasting ability of
those models in the specific market.

Second, we extend previous research by including the squared
lagged basis of futures prices in the specification of the conditional

variance in what is termed the GARCH-X model (Lee, 1994; Ng and
Pirrong, 1996). A principal feature of the basis is that the time paths of
spot and futures prices are influenced by the extent of deviations from
their long-run equilibrium (Engle and Granger, 1987). As prices
respond to the magnitude of disequilibrium then, in the process of
adjusting, they may become more volatile. If this is the case then the
inclusion of the basis term in the conditional variance specification
may lead to the estimation of more accurate volatility forecasts.
Examining different volatility components will enable us to investi-
gate whether the dependence of volatility to the basis changes across
different regimes and uncover how these asymmetries are transmit-
ted. To the authors knowledge this is the first time that the GARCH-X
methodology is tested in a regime volatility setting. Implementing
such models allows us to draw some new interesting insights
regarding the effect of disequilibrium and the persistence of volatility
under different market conditions.

Third, we extend the above framework to a conditional extreme
value theory (EVT) setting and use the estimated volatility models as
filters, in order to combine the forecasts with EVT-based methods for
quantile estimation and link the regime volatility background with
tail estimation. From a risk management perspective, the tails of the
conditional distributions of the models may contain important
information that needs to be considered. Existing literature that
addresses the issue is limited to the EVT-Switching ARCH model of
Samuel (2008), applied in estimating VaR in the stock index market.
In the oil market there is limited evidence on conditional EVT based
VaR provided by Krehbiel and Adkins (2005) for the NYMEX complex
and Marimoutou et al. (2009) for WTI and Brent crude oil.

Fourth, the forecasting performance of the proposed models is
assessed and contrasted using a battery of forecast statistics which
measure both the tracking errors from actual volatility measures, as
well as the degree of volatility under or over-prediction. In addition,
we evaluate the effectiveness of the proposed models in VaR
applications for both long and short positions and this way, we
provide robust evidence on the performance of the proposed volatility
models. VaR forecasts are assessed by means of risk management loss
functions and their relative performance is ranked using White's
(2000) Reality Check.

Finally, volatility and VaR forecasts are tested across periods of
backwardation and contango. Many authors (see Fama and French,
1987 and Geman and Ohana, 2009) have shown that price volatility
has a negative correlation with inventory levels, in line with the
theory of storage. Consequently, it is worth examining the perfor-
mance of different models under conditions of backwardation and
contango, since the risk-return profile of energy prices is known to
change fundamentally, between the two different states.

The remainder of this paper is organised as follows. Section 2
demonstrates the Regime GARCH models estimation procedure. In
Section 3, the data and their properties are discussed. This is followed
by an evaluation of the proposed strategies in Section 4. Finally,
conclusions are given in the last section.

2. Methodology

To estimate the volatility models, the methodology used in this
study follows the Mix-GARCH model of Haas et al. (2004a) and
Alexander and Lazar (2006) and the MRS-GARCH model of Haas et al.
(2004b). Both assumemore than one individual component variances
and differ in the way that they treat regime probabilities. For the
former, what is important is the overall regime probability; for the
latter, the probability of each observation belonging to any given
regime is more important. However, both models assume that asset
returns are generated from different information distributions and in
this regard, they can accommodate parameter shifts or switches
among a finite number of regimes; this is expected to improve the
performance of these models in financial applications, such as VaR.

1 See for instance Wilson et al. (1996). Employing an iterative cumulative sums-of-
squares (ICSS) approach, they show evidence of sudden changes in the unconditional
volatility of oil futures contracts. In particular, 15 significant volatility changes were
detected from 1984 to 1992, whereas 5 of these exceeded 100% in absolute terms e.g.
the eight day period following the invasion of Kuwait in 1991 was associated with a
213 percent upward change in the unconditional volatility.
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