Accepted Manuscript

Effect of bubble size on bubble-particle attachment and film drainage kinetics - A theoretical study

Yaowen Xing, Xiaohui Gui, Yijun Cao

PII: S0032-5910(17)30744-1
DOI: doi: 10.1016/j.powtec.2017.09.007
Reference: PTEC 12812

To appear in: Powder Technology

Received date: 18 May 2017
Revised date: 8 August 2017
Accepted date: 6 September 2017

Please cite this article as: Yaowen Xing, Xiaohui Gui, Yijun Cao, Effect of bubble size on bubble-particle attachment and film drainage kinetics - A theoretical study, Powder Technology (2017), doi:10.1016/j.powtec.2017.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effect of bubble size on bubble-particle attachment and film drainage kinetics - A theoretical study

Yaowen Xing1,3, Xiahui Gui2, Yijun Cao4

1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

2. Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

3. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

4. Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, China

Corresponding author address: cumtxyw@126.com (Xing. Y), guixiahui1985@163.com (Gui. X), yijuncao@126.com (Cao. Y)

Abstract

Effect of bubble size on bubble-particle attachment and film drainage was studied based on the extended Derjaguin-Landau-Verwey-Overbeek theory and the Stefan-Reynolds flat film model. The disjoining pressure isotherms and wetting film drainage kinetics between a bubble and an model silica with different hydrophobic force decay lengths were calculated theoretically. It is found that the results depend on the shapes of total disjoining pressure isotherms. Film formed between a small bubble and silica surface always has faster drainage kinetics compared to that formed between a big bubble and silica surface due to the high Laplace pressure. For a monotonic repulsive total disjoining pressure, the wetting film is thermodynamically stable and the final equilibrium film thickness decreases with decreasing
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات