A hybrid method using experiment design and grey relational analysis for multiple criteria decision making problems

Peng Wang *, Peng Meng, Ji-Ying Zhai, Zhou-Quan Zhu

School of Marine Engineering, Northwestern Polytechnical University, Xian 710072, PR China

A R T I C L E I N F O
Article history:Received 8 December 2012Received in revised form 5 August 2013Accepted 15 August 2013Available online 31 August 2013

Keywords:
Multiple criteria decision makingDesign of experimentGrey relational analysisRapid prototyping processFlexible manufacturing systemAutomated inspection systems

A B S T R A C T
To improve the market competitiveness of enterprises in the manufacturing industry, some of them involve picking the most appropriate strategies among multiple available alternatives. However, no single alternative works is suitable for all evaluation criteria which must be considered during the selection processes. This paper proposes a new hybrid MCDM method using design of experiment (DoE) and grey relational analysis (GRA), called DoE-GRA method, to solve this kind of problem. Three illustrative MCDM examples consisting of selection of (a) a rapid prototyping process, (b) a flexible manufacturing system, and (c) an automated inspection system, are analyzed to demonstrate the application capability of the DoE-GRA method. The results of comparisons show that the DoE-GRA method is featured by less sensitive to weight changing, simple and fast calculation, robust and practical. It is suitable for solving MCDM problems.

1. Introduction

There are many multiple criteria decision making (MCDM) problems in manufacturing industry. Different from single criterion decision making problems, in multiple criteria decision making problems, a decision maker (DM) has to choose the most appropriate alternative that satisfies the evaluation criteria among a set of candidate solutions. For that the evaluation criteria are frequently in conflict with each other, how to make a scientific decision becomes a difficult problem [1].

A number of methods have been proposed for solving MCDM problems such as scoring models [2], simple additive weighting [3], axiomatic design [4], analytic hierarchy process (AHP) [5], technique for order preference by similarity to ideal solution (TOPSIS) [6], preference ranking organization method for enrichment evaluation (PROMETHEE) [7], and multi-objective optimization on the basis of ratio analysis (MOORA) [8]. Almost all the methods above mentioned require the relative importance of each criterion which is supplied by weights. The result is sensitive to the change of weights [9], i.e., different weights will produce different results. When weight changes, the whole mathematical calculation process has to do all over again, which may be impracticable and ineffective for DMs, who may not have a strong mathematical ability.

As decision making requires multiple perspectives from different people, most organizational decisions are made in groups. To make the group decision making process as efficient and effective as possible, multi-criteria group decision making (MCGDM) method is proposed. In practice, subjective and objective information may need to be processed simultaneously in MCGDM problems that may contain uncertainties. Aiming at the uncertainties of subjective information and objective information, based on fuzzy sets [10] and fuzzy logic [11], several fuzzy MCGDM methods have been proposed and proved to be very effective technique to increase the level of overall satisfaction in MCDM problems [12–14]. However, the calculation of fuzzy MCGDM method is difficult. So a new method has been proposed in this work which is easy to use and adaptable.

Grey system theory provides a mathematical means to deal with poor, incomplete, and uncertain information. It is first developed by Deng [15,16], to study the uncertainties in system models, to help in prediction and decision making. In grey systems theory, according to the degree of information, if the system information is fully known, the system is called white systems, if the information is unknown, it is called black systems. A system with information known partially is called a grey system. The grey system theory includes five major parts: grey prediction, grey relational analysis, grey decision, grey programming and grey control [16,17]. Grey relational analysis (GRA) as an important part, reflects the trend relationship between an alternative and the ideal alternative, but it cannot reflect the situational relationship. In order to improve this situation, some steps of the GRA have been modified just as the normalized formula, the ideal and non-ideal alternative had been considered at the same time, etc. [18,19].
In this paper, a new hybrid MCDM method using design of experiment and grey relational analysis, also called DoE-GRA method, is introduced. Three different MCDM problems in real-time manufacturing applications will be solved using the DoE-GRA method. According to the results, the DoE-GRA method is featured by less sensitive to weight changing, it is simple and fast calculation, robust and practical. It could help the DM get the most appropriate alternative in complex MCDM problems. The remaining sections of the paper are organized as follows: Section 2 presents the methods; Section 3 describes the applying process of the DoE-GRA method in detail; Section 4 demonstrates the applicability and potentiality of the DoE-GRA method in solving different MCDM problems. Finally, conclusions and future works are discussed in Section 5.

2. Methods

2.1. Grey relational analysis

In this paper, among the most popular MCDM methods, the GRA method is selected because of its advantages compared with others. Table 1 depicts the comparative performance of some of the most widely used MCDM methods with respect to their computational time, simplicity, mathematical calculations involved and stability [1,8]. From Table 1, it is revealed that in all aspects, the GRA method clearly outperforms the other MCDM methods which proves its universal applicability and flexibility as an effective MCDM tool in solving complex decision-making problems.

Zavadskas and Brauers [20] identified the following seven conditions to justify the robustness of an MCDM method:

1. The MCDM method in which all the decision makers are included is more robust than that method in which only one decision maker is involved.
2. The MCDM method in which all the non-correlated objectives are considered is more robust than that on in which only a limited number of objectives is taken into consideration.
3. The MCDM method in which all the interrelations between objectives and alternatives are taken into account at the same time is more robust than that method in which the interrelations are only examined two by two.
4. The MCDM method which is non-subjective is more robust than that one which uses subjective approaches. The normalization procedure affords a subjective solution for comparing different units of various objectives. Consequently, the MCDM method which uses non-subjective dimensionless measures, like the DoE-GRA method, meaning that the determining results is more robust than that method which uses subjective weights.
5. The MCDM method based on cardinal numbers is more robust than that one based on ordinal numbers.

The grey relational analysis about the non-ideal solution is as follows:

\[R^* = \frac{r^*}{r_{\text{max}}^* - r_{\text{min}}^*}, \quad r^*_j = \frac{r_j}{A_y^j + \xi M^j}, \quad \xi \in (0, 1) \]

where \(A_y^j = |u^* - u_j|, m^* = \min_{j} A_y^j, M^* = \max_{j} A_y^j; \xi \) is the distinguishing coefficient, generally \(\xi \) takes 0.5.

The grey relational coefficient matrix of the alternatives and ideal solution is as follows:

\[
\begin{bmatrix}
 r_{11}^* & r_{12}^* & \cdots & r_{1m}^* \\
 r_{21}^* & r_{22}^* & \cdots & r_{2m}^* \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{n1}^* & r_{n2}^* & \cdots & r_{nm}^*
\end{bmatrix}
\]

The grey relational grade about the \(j \)th alternative and the ideal solution can be obtained as follows:

\[R_j^* = \frac{1}{m} \sum_{j=1}^{m} r_{ij}^*, \quad (i = 1, 2, \ldots, n) \]

The grey relational coefficient of the \(j \)th alternative and the non-ideal solution about the \(j \)th criterion is calculated as follows:

\[r_{ij}^* = \frac{m^* + \xi M^*}{A_y^j + \xi M^j}, \quad \xi \in (0, 1) \]
دریافت فوری متن کامل مقاله

متن کامل مقاله	مقالات انگلیسی
پذیرش سفارش ترجمه تخصصی	امکان دانلود نسخه تمام متن مقالات ایران
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله	امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب	دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات	