
Language engineering techniques for the development of
e-learning applications

Iván Martı́nez-Ortiz, José-Luis Sierra �, Baltasar Fernández-Manjón, Alfredo Fernández-Valmayor

Dpto. Ingenierı́a del Software e Inteligencia Artificial. Fac. Informática, Universidad Complutense de Madrid, C/ Profesor José Garcı́a Santesmases, s/n. 28040 Madrid, Spain

a r t i c l e i n f o

Article history:

Received 19 June 2008

Received in revised form

29 January 2009

Accepted 26 February 2009

Keywords:

E-learning applications

Language engineering

Domain-specific languages

Authoring

Model checking

Rapid prototyping

a b s t r a c t

In this paper we propose the use of language engineering techniques to improve and systematize the

development of e-learning applications. E-learning specifications usually rely on domain-specific

languages that describe different aspects of such final e-learning applications. This fact makes it natural

to adopt well-established language engineering principles during the construction of these applications.

These principles promote the specification of the structure and the runtime behavior of the domain-

specific languages as the central part of the development process. This specification can be used to drive

different activities: rapid prototyping, provision of authoring notations and tools, automatic model

checking of properties, importation/exportation from/to standards, and deployment of running

applications. This language engineering concept also promotes active collaboration between instructors

(the users of the languages) and developers (the designers and implementers) throughout the

development process. In this paper we describe this language-driven approach to the construction of

e-learning applications and we illustrate all its aspects using a learning flow sequencing language as a

case study.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A common practice in e-learning is the use of languages to
describe the different aspects of a learning scenario (e.g. content,
activities, participants, etc). IMS standardization efforts are good
examples of this trend (Friesen, 2005). Indeed, many of these
efforts result in suitable languages for the description of specific
aspects of an e-learning application. Among them it is possible to
find languages for packaging learning contents (i.e. the IMS
Content Packaging specification) (IMS, 2004), for describing the
different products involved in an assessment process (i.e. the IMS
Question & Test Interoperability specification) (IMS, 2006), for
describing the profile of a particular learner (i.e. the IMS Learner
Information Package specification) (IMS, 2005), for sequencing the
activities in a learning flow (i.e. the IMS Simple Sequencing
specification) (IMS, 2003b), or even for characterizing the different
teaching methods arising in heterogeneous learning situations
(i.e. the IMS Learning Design specification) (IMS, 2003a).

While these standardization efforts stress the use of languages
to solve interoperability issues (i.e. as vehicles that can be used by
heterogeneous platforms to exchange information), in our works

we have promoted a complementary philosophy: using suitable
languages to describe applications that are generated by auto-
matically processing these descriptions (Sierra et al., 2006b). This
philosophy is shared by the approaches to software development
based on domain-specific languages (Deursen et al., 2000; Mernik
et al., 2005). According to these approaches software development
is conceived as a language engineering process, where suitable
domain-specific languages are specified, implemented and
maintained for each application domain, and where software
applications are described using these languages instead of
general-purpose programming ones. These approaches are spe-
cially well suited to domains where having efficient mechanisms to
norm the interaction between domain experts and developers is a
must. E-learning is a paradigmatic example of these domains, since
many times the cost of providing the contents and fine-tuning the
final applications exceeds by several orders of magnitude the initial
development cost of the software infrastructures where the
applications will finally be deployed. The adoption of a language-
driven approach in e-learning results in a more rational distribu-
tion of responsibilities among the participants in the development
process. Instructors will be in charge of producing and maintaining
the final applications, while developers act as language engineers
responsible for formalizing and maintaining the languages used by
the instructors. Developers are also in charge of the software
infrastructure associated with such languages (including the
generators used to produce the final running applications).

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2009.02.005

� Corresponding author. Tel.: +34 913947548; fax: +34 913947547.

E-mail addresses: imartinez@fdi.ucm.es (I. Martı́nez-Ortiz), jlsierra@fdi.ucm.es

(J.-L. Sierra), balta@fdi.ucm.es (B. Fernández-Manjón), valmayor@fdi.ucm.es

(A. Fernández-Valmayor).

Journal of Network and Computer Applications 32 (2009) 1092–1105

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2009.02.005
mailto:imartinez@fdi.ucm.es
mailto:jlsierra@fdi.ucm.es
mailto:jlsierra@fdi.ucm.es
mailto:balta@fdi.ucm.es
mailto:valmayor@fdi.ucm.es
mailto:valmayor@fdi.ucm.es

We have successfully tested these language-driven principles
in the development of several e-learning systems and applications
(Fernández-Manjón and Fernández-Valmayor, 1997; Moreno-
Ger et al., 2007; Sierra et al., 2006c, 2007b, 2008c), where we
have tested the importance of using domain-specific languages to
orchestrate the collaboration needed between instructors and
developers. In these experiences we have also realized the
feasibility of a complementary approach to the interoperability-
oriented standardization efforts when adopting a language-driven
process model. Instead of seeking universal solutions, we consider
that it is also interesting to take a different approach by
formalizing the languages already used by instructors in their
specific learning domains. Since these languages are domain
specific and part of the instructors’ experience, they are more
understandable and easier to use for the instructors than the more
generic ones. It does not mean that standardization issues are
ignored. Indeed, these issues can be subsequently addressed by
appropriate importation/exportation modules. However, by
adopting a language engineering perspective, where developers
are constantly providing suitable linguistic support according to
the particular needs of the instructors, it is possible to promote an
instructor-centered development process, which results in in-
structors’ deeper involvement in the production and maintenance
of the e-learning applications. In this work we will mainly
illustrate this bottom-up approach, similar to the experiences
reported by Sierra et al. (2006a), although the techniques will also
be largely applicable in a top-down manner, based on the use,
specialization and adaptation of pre-existing languages, such as
the one proposed by Moreno-Ger et al. (2006).

The present paper exposes the marriage between e-learning
and language engineering. For this purpose, it describes and
illustrates the different activities promoted by a language-driven
approach in e-learning, and how these activities are organized
around sound specifications of domain-specific languages. These
specifications start with the characterization of abstract informa-

tion models for the languages, which are described in both a
conceptual and a formalized way. The structural formalization of
the languages allows for the subsequent formalization of their
runtime behaviors in the form of suitable operational semantics.
The resulting specifications are used to drive many other language
engineering activities. Indeed, these specifications can be readily
used to build running prototypes of the languages in a
straightforward way, which can be used to refine the structure
and the semantics of these languages. They can also be used to
provide notations that are more user-friendly for the instructors
(e.g. a graphical notation), by specifying a mapping between these
notations and the abstract information models. The resulting
languages facilitate the automatic checking of properties, which
results in better authoring support for instructors. Since the usual
e-learning specifications are also language based, it is possible to

connect these specifications using appropriate language transla-
tions. Finally, the resulting high-level designs can be easily
deployed using the well-known model-view-controller (MVC)
pattern (Krasner and Pope, 1988), which is typically used for
organizing many modern web-based applications.

The structure of the paper is as follows. Section 2 motivates the
language-driven approach by comparing it with conventional
development models. In Section 3 we introduce a case study that
will be used throughout the paper for illustrative purposes. In
Section 4 we focus on the structural and behavioral specification
of domain-specific languages. Section 5 is devoted to analyzing
the different activities enabled by this language-driven approach.
The paper finishes by presenting some conclusions and lines for
future work (Section 6).

2. Language-driven development of e-learning applications
compared to conventional development approaches

In a conventional development process model instructors are
requirement providers, while developers act as application im-
plementers. By using conventional requirement acquisition techni-
ques, developers interview instructors to determine which
resources (i.e. contents, support tools, etc.) must be incorporated
in the application, as well as how the final users (e.g. instructors,
learners, etc.) interact with these contents. For example, as result of
the requirement acquisition process to develop an e-learning
course, instructors determine, among others: the learning contents
and tools needed, the structure of the course/lessons and the
transitions between the different parts of a lesson or the whole
course. With all this information, and using general-purpose
programming languages and technologies (e.g. Java, XML, etc.),
developers implement the application; for example, they can
provide a web-based implementation by using a suitable frame-
work for the development of web-based applications, such as
Apache Struts (Goodwill and Hightower, 2003). Then, the developed
application is evaluated by instructors (perhaps with the help of
end-users), who eventually can discover some aspects to be
improved in the contents or in the interactions. Thus, instructors
propose modifications and/or improvements in the application to
the developers, who produce an enhanced application, starting a
new evaluation (e.g. instructors could include new content, modify
existing ones, as well as modify the learning flow which governs the
transitions between the different parts of the course). This iterative
behavior, characterized by the production/modification of applica-
tions, finishes when a satisfactory application has been obtained but
it needs to be started again when the application needs to be
updated (Fig. 1a). In fact, the process model described resembles the
Analysis Design Development Implementation and Evaluation (ADDIE)
methodology extensively used for the development of e-learning

ARTICLE IN PRESS

Requirements

Changes

Application Developers Instructors Instructors

Domain-specific language

Application description

Application
generator Application Developers

Fig. 1. Simplified views of (a) conventional development of e-Learning applications, and (b) language-driven development.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1093

http://isiarticles.com/article/17518

