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Sharp fluctuations (in particular, extreme fluctuations) of asset prices have a great impact
on financial markets and risk management. Therefore, investigating the time dynamics of
sharp fluctuation is a challenge in the financial fields. Using two different representations
of the sharp fluctuations (inter-event times and series of counts), the time clustering

behavior in the sharp fluctuation sequences of stock markets in China is studied with sev-
eral statistical tools, including coefficient of variation, Allan Factor, Fano Factor as well as R/
S (rescaled range) analysis. All of the empirical results indicate that the time dynamics of
the sharp fluctuation sequences can be considered as a fractal process with a high degree of
time-clusterization of the events. It can help us to get a better understanding of the nature
and dynamics of sharp fluctuation of stock price in stock markets.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sharp fluctuations (in particular, extreme fluctuations)
of asset prices have a great impact on financial markets
and risk management. Therefore, investigating the time
dynamics of sharp fluctuation is a challenge in the financial
fields.

Many scholars showed their interests on this issue and
found some meaningful conclusions. Chen et al. [1] ana-
lyzed the daily Hang Seng index in the Hong Kong stock
market. They predicted the future price movements using
two kinds of sign sequences as given conditions. One is
the parameter of multifractal spectrum Af based on the in-
dexes recorded in every minute, and the other is the vari-
ation of the close index Ai. Results show that correlation
between large fluctuations of the close price and the condi-
tion in these two methods is strong and some sign se-
quences of the parameter Af can be used to predict the
probability of the near future price movements. Muchnik
et al. [2] studied the long term memory in extreme returns
of financial time series and revealed that the returns exhi-
bit pronounced long-term memory. This “stylized fact” can
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shed further insight on price dynamics that might be used
for risk estimation. We also studied the sharp fluctuation of
stock price index in Chinese stock market using multifrac-
tal spectrum and multifractal detrended fluctuation analy-
sis (MF-DFA), respectively, and found that when the stock
price index fluctuates sharply, a strong variability is clearly
characterized by multifractal parameters and the general-
ized Hurst exponents [3,4]. Zhang et al. [5] tried to capture
the fluctuations caused by the extreme event on crude oil
prices variation during the analyzed period using an
empirical mode decomposition (EMD-based) event analy-
sis approach. It was found that this method provided a fea-
sible solution to estimate the impact of extreme events on
crude oil prices variation. In addition, many relative re-
searches have been performed in order to capture the main
features of extreme fluctuations [6-12], all of these results
are meaningful and important and can lead to a better
understanding of complex stock markets.

However, it is noted that most of the previous researches
concentrated on the time series analysis of capital price ser-
ies and capturing the statistical characteristics of financial
time series, and few focused on the temporal dynamics of
financial sharp fluctuation (or extreme fluctuation) se-
quences. In fact, the temporal dynamics of sharp fluctuation
sequences are very useful information for understanding
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possible causes of sharp fluctuation, improving sharp
fluctuation prediction and financial risk management as
well as for improving predictive models. Nevertheless, the
temporal dynamics of sharp fluctuation are still seldom
known because the dynamics of sharp fluctuation result
from many complex interaction factors and also factors
involving human activities. It is very important and mean-
ingful to study the temporal behavior and dynamics charac-
teristics of sharp fluctuation of financial markets. Therefore,
a further research work will help us to get a better under-
standing of the nature of stock price dynamics.

On the other hand, Telesca et al. [13-22] studied the
characterization of temporal fluctuations in other complex
systems, such as seismic sequences, car accident sequence
and forest fire sequence, etc. The fundamental principle of
these researches is that extreme event sequence can be as-
sumed to be a realization of a point process. The discrete-
time process can be derived from the stochastic point pro-
cess in two equivalent ways (1) using the inter-event time
series or (2) forming its relative counting process. In the
first representation a discrete-time series is formed by
the rule t;=t;; — t;, where t; indicates the time of event
numbered by the index i. In the second representation,
the time axis is divided into equally spaced contiguous
counting windows of duration T. The duration T of the win-
dow is called counting time or timescale. The latter ap-
proach considers the extreme events as the events of
interest and assumes that there is an objective clock for
the timing of the events. The former approach emphasizes
the interspike intervals and uses the event number as an
index of the time [16,17]. This research idea can also be ap-
plied in the temporal fluctuation analysis on sharp fluctu-
ation in stock markets, for sharp fluctuation (or extreme
fluctuation) sequences can also be viewed as a realization
of a stochastic point process.

In this context, our study aims to analyze the time-clus-
tering characteristics of sharp fluctuation sequences of
stock markets in China. We performed a detailed statistical
analysis to investigate the time-clustering properties of the
sharp fluctuation sequences of stock markets in China. The
statistical tools include coefficient of variation, Allan Factor,
Fano Factor as well as R/S (rescaled range) analysis. All of
these empirical results suggest that the sequences are char-
acterized by a high degree of time-clusterization. It can help
us to get a better understanding of the nature and dynamics
of sharp fluctuation of stock price in stock markets.

2. Methods

Sharp fluctuation sequences can be viewed as a realiza-
tion of a stochastic point process. A stochastic point process
describes events that occur at some random locations in
time and is completely defined by the set of the event times.
The series can be represented by a finite sum of Dirac’s delta
functions centered on the occurrence time t;:

y(e) =3 o(t—t) (1)

N
i=1

where N represents the number of events recorded. Then
dividing the time axis into equally spaced contiguous

counting windows of duration 7, which is called timescale,
we produce a sequence of counts {N,(7)}, with Ni(t) denot-
ing the number of events in the kth window:

Ok

ia(t — t;)dt 2)

Ge1 j=1

Nk(f) =

This sequence is a discrete-random process of non-nega-
tive integers. The importance of this representation is that
it preserves the correspondence between the discrete time
axis of the counting process {N,} and the “real” time axis of
the underlying point process, and the correlation in the
process {N,} refers to correlation in the underlying point
process. Such a process may be called fractal when a num-
ber of relevant statistics exhibit scaling with related scal-
ing exponents, which indicate that the represented
phenomenon contain clusters of points over a relatively
large set of timescales.

In order to analyze time behavior and time-clustering
properties of sharp fluctuation (or extreme fluctuation) se-
quences, we used several statistical measures to feature
the time properties. These methods have been extensively
used to analyze the time-clustering properties in complex
systems such as seismic sequences, car accident sequence
and forest fire sequence, etc. [13-24]. These methods in-
clude coefficient of variation (CV), Allan Factor (AF), Fano
Factor (FF) and rescaled range (R/S) analysis. Two of them
(CV, R/S analysis) are related to the inter-event interval
representation, while the remaining two (AF, FF) are re-
lated to the counting process representation. We will give
a brief introduction of these measures.

2.1. Coefficient of variation

The C, is a commonly used measure to evaluate the
clustering behavior of a point process, it is defined as

o
Co=15

where (7) is the mean inter-event time and ¢, is its standard
deviation, a Poissonian process (completely random) has a
Cy=1, but a clusterized process is characterized by a
C,> 1. This coefficient does not give information about the
timescale ranges where the process can be reliably charac-
terized as a clustered process. Nevertheless, a complex phe-
nomenon can be deeply known only if the different
timescales governing its dynamics are well understood [16].

(3)

2.2. Fano Factor

The Fano Factor (FF) is defined as the variance of the
number of events in a specified counting time or timescale
T divided by the mean number of events in that counting
time; that is

(Ni(®)) = (Ne(©)”
(Nk(f))

where () indicates the average value. In order to evaluate
the presence of scaling, the timescale T is varied and a rela-
tionship FF(t) ~ T is obtained [17].

FF(7) = (4)
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