A perspective on credit derivatives

Jonathan Battena,*, Warren Hoganb,1

aSchool of Accounting and Finance, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
bSchool of Finance and Economics, University of Technology, Sydney, Haymarket, NSW 2007, Australia

Abstract

This contribution offers an explanation of credit derivatives as a group of financial instruments having a common purpose being the managing of credit exposures, and thus credit or default risk. This paper explores the links between their economic and financial manifestations and the legal bases for their widespread application. To ensure an understanding of the purposes served by each of the main types of credit derivatives, a detailed scrutiny of individual instruments is undertaken. Issues relating law and economics to trading in this type of derivative are investigated, then pricing issues and empirical evidence are considered. A summary brings together the range of features bearing upon the effective development of a market in these financial instruments.

© 2002 Elsevier Science Inc. All rights reserved.

\textit{JEL classification:} C31; G10

\textit{Keywords:} Credit risk; Credit derivatives; Credit default swaps; Credit-linked notes; Credit spreads; Total return swaps

1. Introduction

Credit derivatives are a group of financial instruments that have as their common main purpose the managing of credit exposures, and thus credit or default risk. These financial instruments exist as financial contracts reflecting the value of the credit risk incorporated in
each agreement between two parties. Each financial contract associated with one or other of
the credit derivatives, of which there are a number, derives its value from the existence of a
prior lending contract in which credit risk may be just one of some risk features. Others
include foreign exchange and interest rate risks.

The credit derivative market has grown rapidly since the British Bankers Association
(BBA) estimated the London market for credit derivatives to be US$40 billion in 1996 with a
global market estimated at US$100 billion (BBA, 1996). Later, Greene et al. (1998) placed
the total market outstandings at three times this amount being US$300 billion. Notional
outstandings provided by the US Office of the Comptroller of the Currency, reveal that US
outstandings alone exceeded US$400 billion in 2001, with more than 400 financial
institutions now using derivatives for risk management and trading. These statistics highlight
the rapid deployment and acceptance of these instruments by financial market participants.

The term “credit derivative” is a general term for a variety of financial instruments having a
common purpose but not necessarily common features. Three building blocks drawn from
forward agreements, swaps, and options are the bases for devising most credit derivatives.
Forward agreements are based upon interpolated and implied interest rates from an existing
term structure, while swaps allow the transformation, hedging and trading of fixed and floating
interest exposures, while pricing usually assumes a zero net present value at the time the
contracts are exchanged between the parties. An option is a contingent asset or liability whose
value at any given time may be settled by the price of the underlying financial instrument,
with the option value largely dictated by the underlying price volatility, contract time to
maturity, and the option’s out of the moneyness.

However well understood the basis of the credit derivative, as one of several risk
characteristics that may be stripped from a lending agreement, the question remains as to
what purposes are served by this instrument. Any general explanation must lie in the capacity
of one or more third parties to price the credit risk in the lending agreement over its maturity
more effectively than the lender (Marshall, 1997; Morgan, 1997). Yet, this interpretation
should be treated cautiously. For example, it may not necessarily be binding when the lending
agreement is designed as a “loss leader” to attract other nonlending business. Also it is
important to recognize the empirical evidence presented by authors such as Collin-Dufresene,
Goldstein, and Martin (2001) who argue that other factors, such as liquidity, may
override concerns over firm-specific factors, such as default risk, in terms of pricing.

Credit risk has its ultimate expression in the inability of a borrower to repay a loan with
subsequent declaration of bankruptcy and no recovery of the sum lent. This polar expression of
credit risk is not what credit derivative instruments are intended to deal with though any one of
them will recognize the possibility of that polar outcome. Credit risk is incurred whenever
there is a decline in the ability of the borrower to repay the debt. Any decline changes the
prospects of a borrower being able to repay, which means an increase in credit risk. Thus, the
borrower in these new circumstances could be expected to have to pay more should new funds
be sought or were the old contract due for renegotiation and rollover. For the lender, the
deterioration in the borrower’s perceived ability to repay will bring higher risk exposure for the
same reward and an incremental reduction in the quality of the asset portfolio. Should there be
a number of borrowers experiencing similar deterioration, then the lender’s asset portfolio may
دریافت فوری متن کامل مقاله

<table>
<thead>
<tr>
<th>متن کامل مقاله</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ امکان دانلود نسخه تمام متن مقالات انگلیسی</td>
</tr>
<tr>
<td>✓ امکان دانلود نسخه ترجمه شده مقالات</td>
</tr>
<tr>
<td>✓ پذیرش سفارش ترجمه تخصصی</td>
</tr>
<tr>
<td>✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله</td>
</tr>
<tr>
<td>✓ امکان دانلود رایگان ۲ صفحه اول هر مقاله</td>
</tr>
<tr>
<td>✓ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب</td>
</tr>
<tr>
<td>✓ دانلود فوری مقاله پس از پرداخت آنلاین</td>
</tr>
<tr>
<td>✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات</td>
</tr>
</tbody>
</table>