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a b s t r a c t

In this paper, we propose a mixed integer programming (MIP) model for a multi-level multi resource
capacitated lot sizing and scheduling problem with a set of constraints to track dependent demand bal-
ances, that is, the amount left over after allocating the available inventory to the dependent demands. A
part of this leftover amount may be kept as a reservation quantity to meet dependent demands of the
following period under capacity restrictions. These constraints are necessary because we assume inde-
pendent demands as well as dependent demands for all items in the product structure. They also are used
to tighten the domain of on hand and backorder inventory levels. Although we allow backorders for inde-
pendent demands only, this is not possible for dependent demands as backorders will disturb the whole
demand balance of the product structure. Determination of setup costs is a crucial task when developing
lot sizing and scheduling models, especially in a capacitated manufacturing environment with backor-
ders. In this respect, the capacitated lot sizing with linked lot sizes (CLSPL) model we formulate needs
not to consider setup costs to avoid unnecessary setups thanks to the new set of constraints, and to obtain
feasible lot sizes and schedules. Finally, a numerical example and computational results in a job shop
environment are also given, and future research directions are provided.

� 2009 Elsevier Ltd. All rights reserved.

1. Background and motivation

Material Requirements Planning (MRP), developed by Orlicky
(1976), is the most popular production planning and scheduling
system in practice. MRP provides the right part at the right time
for the right customer, i.e., it aims to plan the end item require-
ments of the master production schedule.

First, MRP systems are characterized by their rapid adaptability
to dynamic changes in a production/inventory system, and ability
to determine the production and inventory requirement several
periods in advance. Limitations, for example, are its inability to
perform comprehensive capacity planning, using constant and in-
flated lead times, and its lack of a fluent shop floor extension due
to myopic solution methodology (see Pochet & Woolsey, 2006).
To address these limitations, it may be necessary to develop an
optimization approach to reach the desired goal of simultaneously
improving the productivity and flexibility of an MRP system. A
comprehensive survey of the different optimization approaches,
that were developed in the lot sizing and scheduling literature
can be found in Drexl and Kimms (1997).

Lot sizing and scheduling literature generally is categorized into
two groups, which are the small and big time buckets. Grouping is

generally based on specifications of production and the length of
planning period. While at most two different items can be pro-
duced on a resource in small time bucket models, number of differ-
ent lots that can be produced is not restricted in big-bucket
models. Since at most one setup is allowed in small time bucket
models, the sequence of different lots is already known. In other
words, small time bucket models solve the lot sizing and schedul-
ing problem together. On the other hand, a primitive form of big
time bucket models, which is known as capacitated lot sizing prob-
lem (CLSP), cannot answer the scheduling question. However, re-
cent studies on big time buckets try to determine at least the
first and the last lots by linking adjacent periods.

While periods in small bucket models usually correspond to
small time slots such as hours or shifts, big-bucket models deal
with planning horizons usually less than 6 months i.e., days, weeks
or months (Drexl & Kimms, 1997). The main characteristic of big-
bucket models is that they do not restrict the number of items pro-
duced in any period.

The capacitated lot sizing problem (CLSP) is typical of big-buck-
et models. It is an extension of the Wagner–Whitin model to inte-
grate capacity limitations. Since the size of a bucket is larger than
the setup times, the error due to nonpreservation of the setup state
between adjacent periods is negligible. Different forms of the
mixed integer programming model for solving the CLSP are sur-
veyed in Karimi, Ghomi, and Wilson (2003).

In a manufacturing environment, there are instances where
developing a feasible schedule is only possible when setup states
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are carried over from one period to another. Setup carryover is the
continuation of a production run from one period to the next with-
out an additional setup. Setup carryover in big-bucket models is
concerned with ‘‘partial sequencing” of items. The sequence of
items scheduled between the first and last does not affect the total
required setup time unless the items are sequence dependent,
where setups can be done in any order.

The complexity of modeling setup carryover in CLSP problems is
why it has not received much attention in the literature. Gopala-
krishnan, Miller, and Schmidt (1995) present a formulation of the
CLSP with setup carryover, which is not effective because of its
extensive use of binary variables. In addition, their model assumes
all items have identical setup cost and times. Gopalakrishnan
(2000) later improves his model to incorporate item dependent
setup times and costs. Haase’s (1998) CLSP problem restricts the
carryover to at most one period. Sox and Gao (1999) consider a
capacitated lot sizing problem with linked lot sizes (CLSPL) but
without setup times. Their model formulation is based on the
shortest route representation of the problem. They also indicate
that restricting the carrying of setup states over both periods
causes a maximum deviation from optimality of 2.19%; however,
a solution was reached faster. Suerie and Stadtler (2003), present
a new MIP model with valid inequalities to yield a tight formula-
tion of CLSPL that this paper is partially based on. While they prove
the infeasibility of carrying exactly one setup state from one period
to another for some cases, their model formulation ignores the
necessity of carrying setup state. In other words, whether the same
item continues to be produced or not, setup state of a resource has
to be always carried. Tempelmeier and Buschkühl (2008) develop a
Lagrangean heuristic for CLPSL problem, that assumes no backor-
ders and unit lead times. Sahling, Buschkuhl, Tempelmeier, and
Helber (2009) improve the work of Tempelmeier and Buschkühl
(2008) by incorporating multi-period setup carryover, and propose
a fix and optimize heuristic. However, their problem formulation
ignores backlogging and includes setup minimization for consis-
tent plans. In addition, Sahling et al. (2009) assume infinite capac-
ity of overtime while they try to minimize it using fix and optimize
heuristic. Besides, they ignore the possibility of a setup occurrence
when a setup state of one item is carried over multiperiods. Akar-
tunali and Miller (2009) propose a heuristic framework that can
generate high quality feasible solutions for big bucket multi-level
production planning problems without setup carryovers. However,
their assumptions ignore external demand case for sub-level items,
hence allow backlogging for only end items. Meanwhile, their
model formulation also needs setup minimization to get consistent
plans (see Appendix B for definition of consistency).

All of the lot sizing and scheduling models mentioned above
strongly need to minimize the number of setups to obtain consis-
tent plans. In this paper we formulate a new CLSPL model that
needs not to minimize setups for consistency. By consistency we
mean avoiding unnecessary setups (see Appendix B).

Using lot sizing and scheduling models in master production
schedules has received less attention in the literature (Askin &
Goldberg, 2002; Voß & Woodruf, 2003). Even though the available
studies allow backordering for the independent part of total de-
mand for all items, performance of constraints that they use to pro-
tect dependent demand consistency do not work well in level by
level decomposition approaches (see for instance Nagendra &
Das, 2001; Ornek & Cengiz, 2006). The model developed in this pa-
per includes tighter constraints to restrict the domains of backor-
dering and holding inventories (see Appendix A).

Finally, we describe the problem environment that is covered in
this paper and list the contributions as follows.

The model formulation presented in this paper includes the
case of selling the individual component items, which is the case
of independent demands exist. Consequently, our model allows

backlogging for all items in the bill of material for independent de-
mands only. We further develop a new set of constraints to assure
dependent demand consistency when backlogging is allowed.
These constraints guarantee a stock of units to meet dependent de-
mands of the following periods under capacity restrictions (see
Appendix A).

The model formulation presented here could be applied to all
types of product structures, where a product flow is assumed to
follow a general job shop. In more detail, components at different
levels in the product structure have no dedicated resources. In
other words, a resource can be shared by components at different
levels, i.e., an item can visit a resource more than once as a compo-
nent of other items. Of course our formulation can be used in other
types of product flows by just rearranging the routing parameters.

Also the model developed in this paper can easily be extended
to incorporate other types of supply replenishments, i.e. purchas-
ing, and outsourcing.

The scheduling logic of the model here in is a modified version
of the CLSPL presented by Suerie and Stadtler (2003), where we ex-
tend their setup carryover formulation to eliminate its drawbacks
and to enforce the memory of the model. Here the word ‘‘memory”
is used in the sense that the model remembers the setup state in a
period and carries it to the following period (see Appendix B). In
addition, to our knowledge, the model formulation presented in
this paper is the first study on application of setup carryover with
backlogging allowed.

The rest of the paper is organized as follows. We provide a de-
tailed formulation of the model in the next section, which is fol-
lowed by a numerical example and computational results in
Section 3. Summary, conclusions and future research directions
are presented in Section 4. Justification for some of the constraints
and comparisons with specific models in the literature are given in
the Appendices A and B.

2. Model development

Notation, indices, parameters and decision variables that are
used in the rest of this paper is as follows:
Indices and sets
i, j = 1, . . . , V index of end items,
i, j = V+1, . . . , N index of component items,
k = 1, . . . , K index of resources,
t = 1, . . . , T index of time periods,
Ai set of direct successors of component item i,
Sk set of items that can be manufactured on resource k,
Mi set of resources which item i can be manufactured,

Parameters
c(b)(i) unit backorder cost for item i,
c(h)(i) unit holding cost for item i,
l(i) manufacturing lead time for item i,
e(i, j) number of units of i required to produce one unit of j

(j e Ai) (gozinto coefficient),
d(i, t) independent demand for item i from outside sources at

period t,
I+(i, 0) initial on hand inventory quantity for item i,
I�(i, 0) initial backorder quantity for item i,
p(i, k) time to process one unit of item i on resource k,
s(i, k) setup time of item i on resource k,
c(k, t) capacity of resource k in period t,
b(i) minimum quantity for item i that can be manufactured

physically in terms of stock keeping unit of item i,
m(i, k) big number for item i on resource k and equals to the max-

imum production quantity,
L(i, k, 0) initial setup state for item i on resource k (0 or 1).
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