

Intern. J. of Research in Marketing 21 (2004) 179-200

www.elsevier.com/locate/ijresmar

A meta-analysis of the relationship between market orientation and business performance: evidence from five continents

Cynthia Rodriguez Cano^{a,1}, Francois A. Carrillat^{b,1}, Fernando Jaramillo^{c,*,1}

^a Department of Marketing, College of Business Administration, University of South Florida, 4202 East Fowler Avenue, BSN 3225, Tampa, FL 33620, USA

^bDepartment of Marketing, College of Business Administration, University of South Florida, 4202 East Fowler Avenue, BSN 3219, Tampa, FL 33620, USA

^c Department of Marketing, College of Business Administration, University of Texas at Arlington, Box 19469, Arlington, TX 76019-0469, USA

Received 1 August 2002; received in revised form 10 May 2003; accepted 24 July 2003

Abstract

Market orientation has emerged as a significant antecedent of performance and is presumed to contribute to long-term success. To investigate the impact of this predictor, a meta-analysis was conducted and findings suggest that the relationship between market orientation and business performance is positive and consistent worldwide. One of the unique contributions of this research is a sample that includes studies conducted in 23 countries spanning five continents. The moderating effects of business objective (profit, not-for-profit), industry type (manufacturing, service), socioeconomic development [gross domestic product (GDP) per capita, Human Development Index (HDI)), and Hofstede's individualism cultural dimension] are examined. Stronger correlations between market orientation and business performance were found for not-for-profit compared to profit firms.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Market orientation; Business performance; Meta-analysis; National culture; Services; Not-for-profit

1. Introduction

In today's highly competitive global markets, managers seek to improve organizational effectiveness by identifying organizational metrics linked to business performance. Market orientation is one such metric that has emerged as a significant predictor of performance and is presumed to contribute to long-term success (Deshpandé & Farley, 1999). Market orientation is heavily influenced by the marketing concept (Drucker, 1954; McCarthy, 1960; McKitterick, 1957), and is the cornerstone of the marketing management and marketing strategy paradigms (Hunt, 2002). The Marketing Science Institute has recognized the importance of market orientation for many years, and today it remains a research priority. Over time, scholars have acknowledged that market orientation research has significantly influenced the development of marketing knowledge (Biggadike, 1981; Day, 1999; Kohli & Jaworski, 1990).

Scholars agree that meta-analysis is an important tool for conducting marketing research across different countries (Deshpandé & Farley, 1999). Early

^{*} Corresponding author. Tel.: +1-817-272-2280; fax: +1-817-272-2854.

E-mail address: fjaramil@exchange.uta.edu (F. Jaramillo).

¹ This author contributed equally to the manuscript.

Table	1
-------	---

Study-level coding

Study	Sample size	IND ^a	ORG ^b	Country	IND ^c	MO Scale ^d		PERF Scale ^e		ES^{f}
						Туре	α	Туре	α	
Appiah-Adu (1998a)	74	Х	Р	Ghana	NA	Х	0.740	S	NR ^g	0.230
Baker and Sinkula (1999)	411	Х	Х	USA	91	Μ	0.889	S	0.790	0.297
Balakrishnan (1996)	139	М	Х	USA	91	Κ	NR ^g	S	NR ^g	0.150
Bhuian (1998)	115	М	Р	Saudi Arabia	38	М	0.870	S	0.830	0.188
Caruana, Pitt, and Berthon (1999)	131	S	Р	UK	89	М	0.780	S	0.790	0.143
Caruana, Ramaseshan, and Ewing (1997)	134	S	Ν	Australia	90	М	0.880	S	0.880	0.580
Caruana, Ramaseshan, and Ewing (1998a)	84	S	Х	Australia	90	М	0.810	S	NR ^g	0.520
Caruana, Ramaseshan, and Ewing (1998b)	171	S	Ν	Australia	90	М	0.700	S	0.870	0.620
Caruana, Ramaseshan, and Ewing (1999)	171	S	Ν	Australia	90	М	0.889	S	0.880	0.606
Cervera, Mollá, and Sánchez (2001)	399	S	Ν	Spain	51	М	NR ^g	S	NR ^g	0.337
Dawes (2000)	93	Х	Р	Australia	90	М	0.857	Х	NR ^g	0.198
Deshpandé and Farley (1998)	82	Х	Р	USA. Germany	82	Х	0.710	S	NR ^g	0.430
Dobni and Luffman (2000)	210	S	Р	USA	91	Х	0.785	S	NR ^g	0.184
Dovle and Wong (1998)	344	Х	Р	UK	89	М	0.790	S	0.80	0.360
Duncan (2000)	173	S	Ν	USA	91	М	NR ^g	0	NR ^g	0.196
Farrell (2000)	268	Х	Р	Australia	90	К	0.900	S	0.750	0.326
Grav. Matear. Boshoff. and Matheson (1998)	490	Х	Р	Australia	90	Х	0.696	Х	NR ^g	0.184
Grav. Matear. and Matheson (2000)	21	S	Р	Australia	90	М	NR ^g	S	NR ^g	0.469
Grewal and Tansuhai (2001)	120	x	Р	Thailand	20	М	0.773	õ	0.930	0.020
Han, Kim, and Srivastava (1998)	134	S	P	USA	91	K	0.803	x	0.750	0.140
Harris and Ogbonna (2001)	322	x	P	UK	89	K	0.926	X	0.90	0 326
Hooley et al. (2000)	1396	X	P	Poland, Slovenia.	67	ĸ	0.960	X	0.80	0.169
()	1090		-	Hungary	0,		0.900		0.00	01109
Hult and Ketchen (2000)	181	х	Р	USA	91	К	0.820	0	NR ^g	0 142
Jaworski and Kohli (1993)	136	X	P	USA	91	M	0.783	S	0.830	0.500
Langerak (2001)	72	M	P	Netherlands	80	x	0.905	S	0.850	0.290
Langerak Hutlink and Robben (2000)	126	M	P	Netherlands	80	X	0.813	S	0.880	0.290
Matsuno and Mentzer (2000)	364	M	P	USA	91	M	0.840	0	NR ^g	0.326
Matsuno Mentzer and Rentz (2000)	275	M	P	USA	91	M	0.750	x	NR ^g	0.349
Mayondo (1999b)	146	M	P	Zimbabwe	NA	x	0.912	0	NR ^g	0.240
Narver and Slater (1990)	371	x	p	LISA	91	ĸ	0.881	S	NR ^g	0.210
Ngai and Ellis (1998)	73	M	P	Hong Kong	25	K	0.854	s	0.850	0.270
Ngansathil (2001)	147	M	p	Thailand	20	ĸ	NR ^g	x	NR ^g	0.154
Oczkowski and Farrell (1998)	237	M	P	Australia	90	X	0.895	S	0.820	0.134
Sezkowski ulu Fulton (1996)	190	M	p	Australia	90	x	0.895	S	0.780	0.217
Pelham (1997)	160	M	X	USA	91	x	0.880	s	0.780	0.280
Pelham (1999)	229	M	P	USA	91	x	0.820	S	0.840	0.339
Pelham (2000)	235	M	P	USA	91	x	NR ^g	S	NR ^g	0.347
Pelham and Wilson (1996)	68	X	X	USA	91	x	0.920	S	0.770	0.210
Pitt Caruana and Berthon (1996)	130	x	P	UK	89	M	0.880	S	0.780	0.210
The, Cardana, and Derthon (1990)	192	X	P	Malta	NA	M	0.838	s	0.750	0.296
Pulendran Speed and Widing (2000)	105	M	p	Australia	90	M	0.870	S	NR ^g	0.568
Rain and Lonial (2002)	293	S	p	USA	91	M	0.732	x	0 790	0.225
Raju Lonial and Gunta (1995)	176	S	x	USA	01	M	NRg	x	NRg	0.225
Saini et al. (2002)	117	x	P	USA Canada	86	X	0.010	S	NR ^g	0.540
Selnes Jaworski and Kohli (1996)	222	M	p		01	M	0.910	x	0.830	0.150
Series, Jaworski, and Kolini (1990)	222	M	D	Netherlands	71	M	0.890	x v	0.650	0.255
	231	141	1	Norway	/ 1	141	0.890	Λ	0.070	0.103
				Sweden						
Shoham and Rose (2001)	101	м	P	Israel	54	м	0 827	0	0.820	0 300
Signaw and Honeycutt (1005)	268	M	л Р	IISA	01	K	NPg	s	NPg	_ 0.170
Signary and Honeycult (1995)	200	V	I D	China	52	K.	0.050	5	0.870	- 0.170
5m et al. (2000)	210	Λ	1	Unina	55	IV.	0.000	3	0.070	0.133

180

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران