The economic production quantity with rework process in supply chain management

Kun-Jen Chung*

College of Business, Chung Yuan Christian University, 32023 Chung Li, Taiwan, ROC

ARTICLE INFO

Article history:
Received 18 June 2010
Accepted 10 July 2011

Keywords:
Economic order quantity
Economic production
Rework process and planned backorders

ABSTRACT

Cardenas-Barron [L.E. Cardenas-Barron, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Computers and Industrial Engineering 57 (2009) 1105–1113] minimizes the annual total relevant cost \(TC(Q, B) \) to find the economic production quantity with rework process at a manufacturing system and assumes that \(TC(Q, B) \) is convex. So, the solution \((\bar{Q}, \bar{B})\) satisfying the first-order-derivative condition for \(TC(Q, B) \) will be the optimal solution. However, this paper indicates that \((\bar{Q}, \bar{B})\) does not necessarily exist although \(TC(Q, B) \) is convex. Consequently, the main purpose of this paper is two-fold:

(A) This paper tries to develop the sufficient and necessary condition for the existence of the solution \((\bar{Q}, \bar{B})\) satisfying the first-derivative condition of \(TC(Q, B) \).
(B) This paper tries to present a concrete solution procedure to find the optimal solution of \(TC(Q, B) \).

1. Introduction

Cardenas-Barron [1] minimizes the annual total relevant function \(TC(Q, B) \) to find the economic production quantity with rework process at a manufacturing system with planned backorders and assumes that the annual total relevant cost \(TC(Q, B) \) is convex. So, the solution \((\bar{Q}, \bar{B})\) satisfying the first-order-derivative condition for \(TC(Q, B) \) will be the optimal solution. However, this paper indicates that \((\bar{Q}, \bar{B})\) does not necessarily exist although \(TC(Q, B) \) is convex. Consequently, the main purpose of this paper is two-fold:

(A) This paper tries to develop the sufficient and necessary condition for the existence of the solution \((\bar{Q}, \bar{B})\) satisfying the first-derivative condition of \(TC(Q, B) \).
(B) This paper tries to present a concrete solution procedure to find the optimal solution of \(TC(Q, B) \).

2. The model

The model makes the following assumptions and notations that are used throughout this paper:

Assumptions:
1. Demand rate is constant and known over horizon planning;
2. Production rate is constant and known over horizon planning;
3. The production rate is greater than demand rate;
4. The production of defective products is known;

* Fax: +886 3 2655099.
E-mail address: kjchung@cycu.edu.tw.
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Demand rate, units per time</td>
</tr>
<tr>
<td>P</td>
<td>Production rate, units per time ((P > D))</td>
</tr>
<tr>
<td>R</td>
<td>Proportion of defective products in each cycle ((0 < R < 1 - \frac{D}{P}))</td>
</tr>
<tr>
<td>K</td>
<td>Cost of a production setup (fixed cost), $ per setup</td>
</tr>
<tr>
<td>C</td>
<td>Manufacturing cost of a product, $ per unit</td>
</tr>
<tr>
<td>H</td>
<td>Inventory carrying cost per product per unit of time, (H = iC)</td>
</tr>
<tr>
<td>i</td>
<td>Inventory carrying cost rate, a percentage</td>
</tr>
<tr>
<td>W</td>
<td>Backorder cost per product per unit of time (linear backorder cost)</td>
</tr>
<tr>
<td>F</td>
<td>Backorder cost per product (fixed backorder cost)</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size (units)</td>
</tr>
<tr>
<td>B</td>
<td>Size of backorders (units)</td>
</tr>
<tr>
<td>A</td>
<td>(1 - R)</td>
</tr>
<tr>
<td>E</td>
<td>(1 - R - \frac{P}{D})</td>
</tr>
<tr>
<td>L</td>
<td>(1 - (1 + R + R^2)\frac{D}{P})</td>
</tr>
<tr>
<td>T</td>
<td>Time between production runs</td>
</tr>
<tr>
<td>TC(Q, B)</td>
<td>Total cost per unit of time</td>
</tr>
<tr>
<td>Q*, B*</td>
<td>The optimal solution of (TC(Q, B)).</td>
</tr>
</tbody>
</table>

The products are 100% screened and the screening cost is not considered;
all defective products are reworked and converted into good quality products;
scrap is not generated at any cycle;
inventory holding costs are based on the average inventory;
backorders are allowed and all backorders are satisfied;
production and reworking are done in the same manufacturing system at the same production rate;
two types of backorder costs are considered: linear backorder cost (backorder cost is applied to average backorders) and fixed backorder cost (backorder cost is applied to maximum backorder level allowed);
inventory storage space and the availability of capital is unlimited;
the model is for only one product;
the planning horizon is infinite.

Based on the above assumptions and notation, Cardenas-Barron [1] show that the total cost per unit of time \(TC(Q, B)\) can be written as:

\[
TC(Q, B) = \frac{KD}{Q} + \frac{HQL}{2} + \frac{HB^2A}{2QE} - HB + \frac{FBD}{Q} + \frac{WB^2A}{2QE} + CD(1 + R). \tag{1}
\]

Eq. (1) shows that the respective partial derivatives with respect to \(Q\) and \(B\) can be expressed as:

\[
\frac{\partial TC(Q, B)}{\partial Q} = -\frac{KD}{Q^2} + \frac{HL}{2} - \frac{HB^2A}{2Q^2E} - \frac{FBD}{Q^2} - \frac{WB^2A}{2Q^2E}, \tag{2}
\]

\[
\frac{\partial TC(Q, B)}{\partial B} = \frac{HBA}{QE} - H + \frac{FD}{Q} - \frac{WBA}{QE}. \tag{3}
\]

Consider the first-order-derivative condition for \(TC(Q, B)\)

\[
\frac{\partial TC(Q, B)}{\partial Q} = 0 \tag{4}
\]

and

\[
\frac{\partial TC(Q, B)}{\partial B} = 0. \tag{5}
\]

Eqs. (4) and (5) imply

\[
H [AL(H + W) - EH] Q^2 = 2KDA(H + W) - E(FD)^2, \tag{6}
\]

\[
A(H + W)B = E(HQ - FD). \tag{7}
\]

3. The sufficient and necessary condition for the existence of the solution of the simultaneous Eqs. (4) and (5)

Let \((\tilde{Q}, \tilde{B})\) denote the solution of the simultaneous Eqs. (4) and (5).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی

امکان دانلود نسخه ترجمه شده مقالات

پذیرش سفارش ترجمه تخصصی

امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله

امکان دانلود رایگان ۲ صفحه اول هر مقاله

امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب

دانلود فوری مقاله پس از پرداخت آنلاین

پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات