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a b s t r a c t

Inventory Management and production planning are essential tasks for every company in the industry.

Therefore, the development of a large set of Economic Order Quantity (EOQ) models is needed. In this

paper, a fuzzy multi-item Economic Production Quantity (EPQ) model is developed. This paper

contributes to the state-of-the-art with a theoretical study of a problem, where a company has to

decide the size of some production batches under uncertain cycle times. The uncertainty will be

handled with triangular fuzzy numbers and an analytical solution will be found to the optimization

problem.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the early 20th century, the first models for the combined
optimization of the batch-production and inventory level problem
were derived from the basic Economic Order Quantity (EOQ)
model. Before this, mathematical methods had started emerging
to optimize the size of inventory and orders (the EOQ-model in
Harris, 1913) and since then, there has been an increasing number
of contributions, which have improved and extended the basic
model in many ways. One of these extensions allows for a finite
production rate. The different EOQ-models are most often used in
a continuous-review setting and it is assumed that the inventory
can be monitored every moment in time. It is imperative to
acknowledge the importance of production aspects in supply
chain management, especially in process-based industries. For
these applications, it is important to find solutions that allow the
production to be efficient while keeping inventory low (Björk and
Carlsson, 2007). This tradeoff problem is found in many supply
chains. A specific application that inspired the author to conduct
this research is found in the paper industry supply chains in the
Nordic countries. These supply chains consist of a few, large paper
producing companies and quite many distributors that operate
independently from the producers. Typically a large paper
machine is producing several products in large quantities. There
are often substantial uncertainties found in these supply chains
and these cannot be captured by probabilistic measures, cf. Björk

and Carlsson (2005) and Carlsson and Fuller (1999). The cycle
time (or equivalently the production batch sizes) is often not
exact. There are substantial uncertainties in the market condi-
tions (there has been overcapacity on the European fine paper
market during the past years, Björk and Carlsson, 2007). This may
result in a situation, where management wants to increase batch
sizes in order to produce to stock. There are also other reasons for
the uncertainty in the batch sizes. All these uncertainties will lead
to uncertain cycle time. Therefore, an EPQ-model that models a
production process, with several different products, is developed
in this paper.

Many EOQ-models and EPQ-models are solved analytically with
the use of derivatives. This was also done originally by Harris (1913).
There are, however, other methods in use today. Grubbström and
Erdem (1999) could prove the EOQ-case with backorders without
using derivatives. Mondal and Maiti (2002), on the other hand, used
a genetic algorithm to numerically solve a multi-item fuzzy EOQ
model. Sometimes uncertainties in the EOQ-models can be modeled
stochastically (as done in Liberatore, 1979), but quite often, they
cannot be captured with probabilistic means, but only using expert
opinions from the companies. This is typically the case with new
products, and products with very large seasonal and other unknown
variations. For these kinds of uncertainties it is possible to use fuzzy
numbers instead of probabilistic approaches (Zadeh, 1965, 1973). It
seems that fuzzy set theory can solve inventory problems in a more
accurate manner compared to traditional approaches (Guiffrida,
2009). This is also the case for production planning problems
(Guiffrida and Nagi, 1998).

There are many contributions within this field, for instance,
Chang (2004), who worked out fuzzy modifications of the model
of Salameh and Jaber (2000), which took the defective rate of the
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goods into account. There has also been a continuation of this
track of research: Jaber et al. (2009), where the entropy costs were
included, Khan et al. (2010), where the learning aspect of the
inspection of quality was taken explicitly into consideration and
Khan et al. (2011b), where inspection errors (as well as imperfect
items) also were modeled. A good review over the subject is found
in Khan et al. (2011a). Other contributions that assume perfect
items are Chang et al. (1998) who numerically solved an EOQ with
fuzzy backorder quantities and Yao and Lee (1996) solved it with a
fuzzy order quantity. Ouyang and Wu (1998) and Ouyang and Yao
(2002) solved an EOQ-model with the lead times as decision
variables in addition to the order quantities. Yao et al. (2003)
introduced an EOQ-model for two substitutable products with no
backorders. Yao and Chiang (2003) used the signed distance
method for a fuzzy demand EOQ-model without backorders.

A piece of research closely related to this paper is found in Lee
and Yao (1998), where an EPQ-model for single-items was
worked out. In addition, the demand and the production quantity
were allowed to be triangular fuzzy numbers. They used, how-
ever, a numerical optimization method to solve the problem.
Islam and Roy (2007) formulated a multi-item EPQ model under
space constraints, where the cost parameters were allowed to be
fuzzy. Mondal and Maiti (2002) also allowed the parameters to be
fuzzy (but not the cycle time) and used a genetic algorithm to
numerically solve a multi-item fuzzy EOQ model. This paper
addresses a somewhat similar multi-item EPQ-model, where the
demand is crisp but the cycle time is kept fuzzy, and as a positive
trade-off, an analytical solution is found to the optimization
problem. The analytical solution can be found under the assump-
tion of symmetrical triangular fuzzy numbers (describing the
cycle time) and with a defuzzification of the objective function
before the optimization process begins. The cycle time is also
assumed to be the same for every product and the production line
is assumed to be shared for all products. The result in this paper is
a generalization of the result of Björk (2008), where a similar
method was used to find the analytical solution to the fuzzy cycle
time, but single-item, EPQ-problem.

The paper is organized as follows: first the crisp model is
presented. Then the fuzzy model will be presented and defuzzified
in a similar manner to Chang (2004). The defuzzification will be
performed with the signed distance method so that the analytical
solution can be obtained from the first order derivative (since the
objective function is proven to be convex). Finally a small example
is given and the paper is concluded with a discussion.

2. The crisp multi-item EPQ model with a finite production
rate

The classical multi-item EPQ problem formulation consists of a
set of decision variables, i.e. the sizes of the production batches.
These variables can be exchanged to the corresponding maximum
amount of inventory there will be (directly after the production has
stopped, cf. variable qi in Fig. 1), or the cycle time. In this paper, it is
assumed that different products have the same common cycle time.
Under a case with no uncertainty, the inventory will undergo a saw
teeth behavior, cf. Fig. 1 for an example with two products, for
which the production sizes, y1 and y2 are equal.

The parameters and variables (that can be assumed to be
strictly greater than zero) in the classical multi-item EPQ model
with shared cycle time are the following (where the index
iAI¼{1,2,y,9I9} is denoting the products):

yi is the production batch size (variable)
Ki is the fixed cost per production batch (parameter)
Di is the annual demand of the product (parameter)

Qi is the maximum difference in the inventory level (variable)
Ri is the annual production rate (parameter)
hi is the unit holding cost per year (parameter)
T is the cycle time (variable)
qi is the maximal inventory level (variable).

The total cost function, including production setup costs and
inventory holding costs for all products, TCU is given by

TCUðyi,qiÞ ¼
X

i

KiDi
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þ
X

i

hiqi

2
ð1Þ

There is also a need to check that the (shared) production
capacity is enough for all products, i.e.

X
i

Di

Ri
r1 ð2Þ

In addition, the classical EPQ-theory will give the following
relationship between the variables yi, qi and the cycle time T.

qi ¼ yi

Ri�Di

Ri
ð3Þ

The insertion of Eq. (3) into Eq. (1) yields the total cost
function to minimize
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The decision variables yi can also be exchanged with the cycle
time T according the formula T¼yi/Di. This will yield the following
results:
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Eq. (5) is one version of the crisp (classical) multi-item EPQ-
model with shared production capacity and cycle time. This
problem can be solved using the derivatives, since all the terms
in Eq. (5) are convex. The optimal solution will be a result from
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Classical results give us (from Eq. (6)) that the optimal cycle
time is

Tn
¼
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Fig. 1. Representation of a two-product EPQ model with a finite production rate.
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