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Abstract

In reinforcement learning (RL), the duality between exploitation and exploration has long been an important issue. This paper presents a

new method that controls the balance between exploitation and exploration. Our learning scheme is based on model-based RL, in which the

Bayes inference with forgetting effect estimates the state-transition probability of the environment. The balance parameter, which

corresponds to the randomness in action selection, is controlled based on variation of action results and perception of environmental change.

When applied to maze tasks, our method successfully obtains good controls by adapting to environmental changes. Recently, Usher et al.

[Science 283 (1999) 549] has suggested that noradrenergic neurons in the locus coeruleus may control the exploitation–exploration balance

in a real brain and that the balance may correspond to the level of animal’s selective attention. According to this scenario, we also discuss a

possible implementation in the brain. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) is a

learning framework in order to adapt to an environment

based on trial and error. This paper discusses an RL scheme

for dynamic environments, i.e. environments that change

with time. Conventional RL schemes are formulated in

terms of Markov decision process (MDP), that is, a

decision-making problem or an optimal control problem in

a stochastic but static environment. Since an optimal control

problem in a dynamic environment can approximately be

formulated as an MDP when RL is faster than the

environmental change, this study also adopts that approxi-

mation. In addition, we also use a formulation of partially

observable Markov decision process (POMDP). A POMDP

assumes that the environment involves unobservable

information, typically, unobservable state variables.

Although RL is a machine learning framework, recent

studies (Schultz, Dayan, & Montague, 1997; Waelti,

Dickinson, & Schultz, 2001) showed that in a real brain a

dopaminergic system including the basal ganglia and the

frontal cortex seems to realize a similar learning scheme.

Doya (2000b) has suggested that parameters used in RL,

which are called ‘meta-parameters’, may correspond to

neuromodulators such as serotonin, noradrenaline and

acetylcholine. Thus, the motivation of our study is not

only on the machine learning but also on the brain learning.

In RL, an agent is provided by the environment with a

scalar reward corresponding to a behavior (action) for each

sensory state. The reward indicates instantaneous goodness

of the action at the state. The objective of the agent is to

maximize the rewards accumulated toward the future, and

the maximization is done by improving its strategy to select

an action for each state. Such a strategy is called a policy.

The estimation and prediction of the accumulated rewards

are important for improving the policy. Therefore, a

standard RL scheme estimates the reward accumulation

which is called the value function.

In order to make a good prediction, it is important to

know the dynamics of the environment, i.e. how the current

state changes by an action. Model-free RL methods like the

actor–critic learning (Barto, Sutton, & Anderson, 1983) and

the Q-learning (Watkins & Dayan, 1992) require no model

of the environmental dynamics; instead, they try to directly

estimate the value function. In contrast, model-based RL

methods (Dayan & Sejnowski, 1996; Dearden, Friedman, &

Andre, 1999; Doya, 2000a; Matsuno, Yamazaki, Matsuda,
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& Ishii, 2001; Moore & Atkeson, 1993; Sutton, 1990) try to

model the environmental dynamics and the value function is

approximated using the model. Especially when the

environment is complicated, e.g. partially observable, a

model-based RL has an advantage, because the environ-

mental model can explicitly deal with the complexity. A

model-based RL learns faster than a model-free alternate.

Our study presents a model-based RL method using the

Bayes inference.

If the agent knows the correct optimal value function

including the correct estimation of the environmental

dynamics, the optimal policy is the one that just selects a

‘greedy’ action that maximizes the value function at each

state. If the estimation and prediction are fairly good,

therefore, a good policy is the one that selects a greedy

action; this is called exploitation. During the process of trial

and error, however, the agent does not know the correct

optimal value function. Especially in a POMDP, an

approximated value function may be apart from the correct

optimal one, due to the uncertain estimation of unobservable

state variables. In such a situation, the greedy action is not

necessarily optimal. In addition, when the environment

changes with time, the value function approximated using

the past experiences will not be optimal. In order to know

the optimal value function, the agent should execute trial

actions, i.e. actions that are not optimal with respect to the

current value function; this is called exploration. Since these

two strategies, exploitation and exploration, cannot be

operated at once, their control has long been an important

issue in the control fields (Fe’ldbaum, 1965).

Methods for exploration can roughly be classified into

two: undirected exploration methods and directed explora-

tion methods (Thrun, 1992). Undirected exploration

methods try to explore the whole state–action space by

assigning positive probabilities to all possible actions. For

example, semi-uniform (e-greedy) exploration and the

Boltzmann exploration (Sutton & Barto, 1998) are

undirected methods.

Directed exploration methods use the statistics obtained

through the past experiences in order to execute efficient

exploration. Kearns and Singh (1998) proposed an explora-

tion algorithm called E 3 algorithm, in which states were

classified into known or unknown states based on the visit

number. At a known state the agent executes directed

exploration under a specific condition, while at an unknown

state the agent mainly executes undirected exploration. R-

max algorithm by Brafman and Tennenholtz (2001) is a

modification of the E 3 algorithm so that the agent executes

directed ‘optimistic’ exploration at an unknown state.

Exploration bonus is one popular technique for directed

exploration. In Sutton’s DYNA system (Sutton, 1990),

exploration bonus is added to the immediate reward based

on the time period that has passed since the state–action pair

was previously experienced. Kaelbling (1993) proposed the

interval estimation algorithm using exploration bonus based

on the upper bound of the confidence interval for the value

function. Moore and Atkeson (1993) also proposed

exploration bonus in their learning algorithm called

prioritized sweeping. In this method, an unfamiliar state is

connected to a fictitious absorbing state with a high value

and the agent is encouraged to visit such unfamiliar states.

In the method by Dayan and Sejnowski (1996), due to the

forgetting effect of the environmental dynamics, the agent

comes to try an action that is not optimal with respect to the

current estimation of the value function.

We discuss in this paper a new control method of the

exploitation–exploration balance. The balance control was

also studied by Thrun (1992). Our method is mainly an

undirected method, in which the balancing parameter is

controlled depending on the current state. Our method also

uses exploration bonus. Usher, Cohen, Servan-Schreiber,

Rajkowski, and Aston-Jones (1999) has suggested that the

exploitation–exploration balance in a real brain may be

controlled by noradrenergic neurons in the locus coeruleus

(LC) and that the balance may correspond to the level of

animal’s selective attention. According to this scenario, we

will discuss a possible implementation in the brain, which

realizes our learning scheme.

Section 2 describes preliminaries to the RL. We propose

in Section 3 a Bayes inference method for identifying the

current environment. We next propose in Section 4 a control

method of the exploitation –exploration balance. An

exploration bonus is also introduced in the same section.

Section 5 shows computer simulation results. Section 6

discusses a possible implementation in the brain, and

Section 7 concludes the paper.

2. Reinforcement learning preliminaries

2.1. Markov decision process

We first consider Markov environments; Pðs0ls; aÞ gives

the probability of reaching state s0 by selecting action a at

state s. If the state-transition probability Pðs0ls; aÞ is known,

the value function for state s, V(s ), should satisfy the

following (optimal) Bellman’s equation:

VðsÞ ¼ max
a

Qðs; aÞ; ð1aÞ

Qðs; aÞ ; rðs; aÞ þ g
X
s0

Pðs0ls; aÞVðs0Þ: ð1bÞ

Qðs; aÞ is often called the action-value function. The reward

function rðs; aÞ defines the immediate reward for a state–

action pair ðs; aÞ: The reward function is assumed to be

deterministic for simplicity, although the extension to

stochastic reward functions is straightforward. 0 # g # 1

is a discount constant. The value function defines the

summation of the discounted rewards accumulated toward

the future. The action-value function Qðs; aÞ represents the

reward accumulation when the agent takes action a at state s

and the optimal actions at the subsequent states.
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