
Toward balanced and sustainable job scheduling for production
supercomputers

Wei Tang a,⇑, Dongxu Ren b, Zhiling Lan b, Narayan Desai a

a Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
b Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

a r t i c l e i n f o

Article history:
Available online 4 September 2013

Keywords:
Job scheduling
Resource management
Priority balancing
Adaptive policy tuning
Workload characteristic

a b s t r a c t

Job scheduling on production supercomputers is complicated by diverse demands of sys-
tem administrators and amorphous characteristics of workloads. Specifically, various
scheduling goals such as queuing efficiency and system utilization are usually conflicting
and thus need to be balanced. Also, changing workload characteristics often impact the
effectiveness of the deployed scheduling policies. Thus it is challenging to design a versatile
scheduling policy that is effective in all circumstances. In this paper, we propose a novel job
scheduling strategy to balance diverse scheduling goals and mitigate the impact of work-
load characteristics. First, we introduce metric-aware scheduling, which enables the sched-
uler to balance competing scheduling goals represented by different metrics such as job
waiting time, fairness, and system utilization. Second, we design a scheme to dynamically
adjust scheduling policies based on feedback information of monitored metrics at runtime.
We evaluate our design using real workloads from supercomputer centers. The results
demonstrate that our scheduling mechanism can significantly improve system perfor-
mance in a balanced, sustainable fashion.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Job scheduling is a critical task on large-scale computing platforms. The job scheduling policy directly influences the sat-
isfaction of both users and system owners. Moreover, the success of a job scheduling policy is largely determined by the sat-
isfaction of these stakeholders. Users are concerned with fast job turnaround and fairness, while system owners are
interested in system utilization. Also, production supercomputing centers are starting to face new challenges in scheduling,
such as avoiding failure interrupts and achieving energy efficiency. All these considerations, which are quantified by system
metrics, are related but often conflict with one another. Even worse, the priorities differ from machine to machine and from
time to time, further complicating the design of a comprehensive job scheduling policy.

Traditional scheduling policies can achieve specific scheduling goals but not balance them well. For example, using ‘‘first-
come, first served’’ (FCFS) achieves good job fairness but results in poor response times and resource fragmentation. On the
other hand, using ‘‘short-job first’’ (SJF) achieves best response time in theory but violates job fairness and causes job star-
vation. Essentially, these approaches attempt to favor a fixed combination of some priorities while ignoring others. Some
traditional schedulers provide mechanisms to switch between these policies when particular boundary conditions are
encountered; however, this approach provides only a coarse ability to refine goal-based priorities.

0167-8191/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.parco.2013.08.007

⇑ Corresponding author. Tel.: +1 3129121207.
E-mail addresses: wtang@mcs.anl.gov (W. Tang), dren1@iit.edu (D. Ren), lan@iit.edu (Z. Lan), desai@mcs.anl.gov (N. Desai).

Parallel Computing 39 (2013) 753–768

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2013.08.007&domain=pdf
http://dx.doi.org/10.1016/j.parco.2013.08.007
mailto:wtang@mcs.anl.gov
mailto:dren1@iit.edu
mailto:lan@iit.edu
mailto:desai@mcs.anl.gov
http://dx.doi.org/10.1016/j.parco.2013.08.007
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


Moreover, user satisfaction and system performance are not considered in a holistic fashion. Typically, job prioritizing and
resource allocation are separated into two subsequent phases in decision making. This division greatly constrains the re-
source allocation process. For example, when a high-priority job suffers from insufficient resources, it reserves the resources
while draining others; yet, these resources could be used to execute other low-priority jobs, thereby improving system per-
formance. This kind of resource draining causes external fragmentation. While backfilling helps in this case, it only mitigates
fragmentation already created by this division [21].

Another issue of job scheduling concerns dynamic workload. Even though we may identify a policy to achieve our inte-
grated goals well for one workload, the policy may fail for a different workload. Although event-driven simulation can be
used to evaluate the aggregate effect of a scheduling policy on a historical workload trace, it cannot provide much guidance
when workload properties change dynamically at runtime.

Motivated by these issues, we propose an adaptive metric-aware job scheduling mechanism. Our objectives are twofold.
First, we develop a metric-aware job scheduling mechanism to prioritize jobs and allocate resources in an integrated fashion.
Here, ‘‘metric-aware’’ means we take the targeted performance metrics into account when configuring a specific scheduling
policy. Moreover, the prioritized jobs are allowed to be altered in a limited fashion during the resource allocation phase. This
approach improves flexibility in schedule creation.

Second, we introduce an adaptive tuning mechanism into job scheduling, which allows the scheduling policy to change
dynamically at runtime based on workload characteristics. By monitoring the performance metrics at runtime, the scheduler
can adjust its scheduling policy to favor the metrics that are less satisfied recently, thereby mitigating the impact of changing
workload characteristics on the scheduling policy. For example, if the system utilization rate is below a certain threshold
(e.g., a longer-term average), our scheduling system will adjust its policy to favor system utilization more than other metrics.

We implemented our design in the production resource management system called Cobalt [1]. We evaluated our design
using recent real job traces from multiple production supercomputers. The experimental results show that our approach can
achieve significant and sustainable performance improvement compared with traditional scheduling strategies.

The remainder of this paper is organized as follows. Section 2 discusses some related work. Section 3 reviews the moti-
vation of our work and describes our methodology. Section 4 illustrates our experimental results. Section 5 summarizes the
paper and briefly discusses future work.

2. Related work

The balancing of multiple scheduling objectives is supported by some production job schedulers. One example is the Maui
scheduler [10], which uses a number of weighted and combined parameters to prioritize jobs. Moab [2], its commercial
descendant, is extremely flexible and supports more than 250 scheduling parameters. To alleviate the tedious work of man-
ual configuration for a Moab scheduling policy, Krishnamurthy et al. [11] provided a toolset that can help a system admin-
istrator to automatically configure a scheduling policy. Basically, the toolset uses a genetic algorithm-based scheme working
with simulations from historical workloads to find an effective configuration. The open-source Cobalt resource manager [1]
uses a simple utility function to prioritize jobs, which can also take into account multiple scheduling considerations. Cobalt
provides an event-driven simulator to guide the design of an appropriate utility function [22]. While our approach also pro-
vides the ability to balance different scheduling goals, it does not rely on the simulation results of recent workloads. That is,
the parameters of a scheduling policy can be tuned at runtime based on the feedback of monitored performance metrics,
thereby adapting to different workload characteristics.

A dynamic tuning scheduling policy can be found in some existing work. Grothlags and Streit [19] and Streit [20]8 pro-
posed a self-tuning ‘‘dynP’’ job scheduler that can tune queuing policy dynamically during runtime. Our work shares similar
motivation but differs from those works in two ways. First, whereas the ‘‘dynP’’ scheduler switches policy between FCFS, SJF,
and LJF (largest job first) based on the number of jobs in the queue, our scheduler supports fine-grained tuning based on
more sophisticated monitoring of a number of targeted system metrics. Second, in our work, both the queuing policy and
the job allocation policy can be tuned, either independently or in a two-dimensional fashion.

Feedback-based scheduling has been used in operating systems or real-time systems. Blevins and Ramamoorthy [5] pro-
posed using feedback information to adjust the schedule in general-purpose operating systems in the form of multilevel
feedback queue scheduling. Lu et al. [12] designed and evaluated a feedback control earliest-deadline-first scheduling algo-
rithm for scheduling in real-time systems. In parallel job scheduling, however, schedulers generally use ‘‘open loop’’ sched-
uling algorithms in which policies are not adjusted based on continuous feedback. Yet, in production supercomputers the
dynamics of the workload is amorphous and can influence the effectiveness of a scheduling policy. Thus, utilizing feedback
information of workload change is beneficial in the selection of a scheduling policy. It is one of the motivations of our work.
Our work differs from existing feedback-based scheduling efforts, however, in that we do not adjust the schedules directly
but instead adjust the scheduling policy that will indirectly change the schedules.

Etsion and Tssafrir [7] reported that the prevalent default scheduler setting is FCFS and that in those management suites
that also support backfilling, the governing scheme used is EASY [13]. Indeed, considerable work has been done to enhance
either FCFS or EASY backfilling. Ababneh and Bani-Mohammad [4] proposed an enhancement to FCFS that uses a window of
consecutive jobs from which jobs are selected for allocation and execution. Shmueli et al. [17] optimized the packing of
backfilling jobs by looking ahead into the queue. Srinivasan and Feitelson [18] designed a selective reservation strategy

754 W. Tang et al. / Parallel Computing 39 (2013) 753–768



http://isiarticles.com/article/20362

