Using an artificial neural network prediction model to optimize work-in-process inventory level for wafer fabrication

Yu-Hsin Lina,*, Jie-Ren Shieb, Chih-Hung Tsaic

a Department of Industrial Engineering and Management, Ming-Hsin University of Science and Technology, No. 1, Hsin-Hsin Road, Hsin-Feng, 30401 Hsin-Chu County, Taiwan
b Department of Mechanical Engineering, Ming-Hsin University of Science and Technology, No. 1, Hsin-Hsin Road, Hsin-Feng, 30401 Hsin-Chu County, Taiwan
c Department of Industrial Engineering and Management, Ta-Hwa Institute of Technology, 1 Ta-Hwa Road, Chung-Lin, Hsin-Chu, Taiwan, ROC

Abstract

A proper selection of a work-in-process (WIP) inventory level has great impact onto the productivity of wafer fabrication processes, which can be properly used to trigger the decision of when to release specific wafer lots. However, the selection of an optimal WIP is always a tradeoff amongst the throughput rate, the cycle time and the standard deviation of the cycle time. This study focused on finding an optimal WIP value of wafer fabrication processes by developing an algorithm integrating an artificial neural network (ANN) and the sequential quadratic programming (SQP) method. With this approach, it offered an effective and systematic way to identify an optimal WIP level. Hence, the efficiency of finding the optimal WIP level was greatly improved.

Keywords: Work-in-process level; Neural network; Sequential quadratic programming

1. Introduction

The semiconductor manufacturing is the most complex manufacturing process in the world (Leachman & Hodges, 1996). The maximization of the throughput rate, the minimization of the cycle time and the standard deviation of the cycle time are the primary performance measurements in wafer fabrication (Huang et al., 1999). However, the semiconductor business environments are challenged by the rapid changes in responsiveness (Qiu, 2005). In practice, production planners use the work-in-process (WIP) inventory level profile to control the material flow and simplify the production control. Controlling WIP is a proven approach in improving the responsiveness of manufacturing systems and services (Qiu, 2005). However, the WIP and the cycle time are convex increasing functions of the throughput (Lin & Lee, 2001). An infinite WIP level maximizes the throughput which cannot exceed the capacity of the bottleneck workstation (Buzacott, 1971). The inherent conflict in the determination of a proper WIP level is obvious when attempting to both maximize the throughput rate and minimize the cycle time. Since different WIP levels can influence the throughput rate (TP), the mean cycle time (CT) as well as the standard deviation of the cycle time (SD), a proper selection of the WIP is crucial to the productivity of wafer fabrication (Lin & Lee, 2001; Miller, 1990). Although there are many WIP-based release control policies which have been proven to be effective (Glassey & Resende, 1988a,b; Glassey and Weng, 1991; Graves, 1995; Qiu, 2005; Tsai, Chang, & Li, 1997; Wein, 1988) for semiconductor manufacturing, few methods have been proposed to find a suitable WIP level as a parameter for those policies. The objective of this study is to determine an optimal WIP level that meets the tradeoff of maximizing...
the throughput rate, minimizing the mean cycle time and
the standard deviation of the cycle time.

Simulation, regression and neural networks are the most
widely used approaches to predict the production perfor-
mance (Huang et al., 1999). Simulation software packages
(e.g. Autoched, Mansim, and Adexa etc.) are common
tools to determine the WIP levels in practice. However,
there are few drawbacks for this method. First of all, a sim-
ulation model is applicable to a specific system only to the
extent that the features contained adequate information
representing that system, and it is very time-consuming to
run a simulation model (Connors, Feigin, & Yao, 1996;
Miller, 1990). Furthermore, it takes a long time to build
and debug simulation models (Suri, Diehl, de Treville, &
Tomsicek, 1995); and it tends to find a suitable rather than
an optimal solution. Thus, it is important to recognize that
this approach only works for a specific system. In addition,
applying the model hinges on the definition of simulation
objectives, the availability and accuracy of data and
assumptions, the verification and validation of the model
for the specific system under study, and the analysis and
interpretation of simulation results (Miller, 1990).

Although regression equations are normally utilized to
find the relationship between the inputs and the outputs,
its very difficulty to determine a proper order for regres-
sion equations. If the order of a selected equation is not
sufficient, it results in low prediction fidelity of output val-
ues. On the other hand, if a higher than necessary order of
equations is chosen, undesirable oscillations of the output
values occur and even reduce the generalization (predic-
tion) capability of equations.

Recently, neural networks become very popular in vari-
ous applications and are successfully implemented in man-
ufacturing processes (Udo, 1992; Huang & Zhang, 1995).
In this study, a multi-output parameter design problem,
which intends to identify an optimal WIP level that yields
a maximum throughput as well as minimizes the cycle time
and the standard deviation of the cycle time, is solved by
integrating the neural network capability with the sequen-
tial quadratic programming (SQP) method (Fletcher,
1981). To resolve this type of problems, Das (1999) pro-
posed to select one response variable as a primary variable,
which is then optimized by adhering to the other con-
straints set by the criteria. Tong, Su, and Wang (1997)
determined a multi-output signal-to-noise (MRSN) ratio
through integrating the quality loss of each response. Liao
(2004) incorporated an artificial neural network (ANN),
data envelopment analysis (DEA) and an improved Tagu-
chi method to optimize a multi-output problem. Egorov–
Yegorov and Dulikravich (2005) adapted an advanced
semi-stochastic evolutionary algorithm for constrained
multi-objective optimization and determined optimum
concentrations of alloying elements in heat-resistant
austenitic stainless steel alloys and super alloys that will
simultaneously maximize a number of alloy’s mechanical
properties. However, these methods are either incomplete
or difficult to determine effective objective functions. More-
over, some methods can only identify an optimal setting
restricted to discrete values.

Hence, in order to obtain an optimal WIP level that
strikes the balance between maximizing the throughput
rate and simultaneously minimizing the mean cycle time
and the standard deviation of the cycle time, this study pro-
posed to train an ANN to learn the relationship between
the WIP levels vs. the throughput rate, the mean cycle time
and the standard deviation of the cycle time. Then the SQP
is implemented to resolve a multi-output constrained prob-
lem. The remainder of this article is organized as follows.
Section 2 describes the optimization model of ANN. Sec-
section 3 illustrates the results and the confirmation tests of
the proposed approach. Finally, conclusions of this study
are contained in Section 4.

2. Optimization process

Fig. 1 depicts a flowchart of finding an optimal WIP
level for the wafer fabrication. Details of each step are
shown at the following subsections.

2.1. Identify the objective of the problem

The objective is to identify an optimal WIP level to max-
imize the throughput rate and simultaneously minimize the
mean cycle time and the standard deviation of the cycle
time. An algorithm integrating an ANN and the SQP
method is implemented. An ANN is an effective modeling
tool to map the relationship between the inputs and the

![Flowchart of finding an optimal WIP level](https://example.com/flowchart.png)

Fig. 1. Flowchart of finding an optimal WIP level.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات