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a b s t r a c t

The paper considers the classical single-period inventory model, also known as the Newsboy Problem,

with the demand normally distributed and fully observed in successive inventory cycles. The extent of

applicability of such a model to inventory management depends upon demand estimation. Appropriate

estimators for the optimal order quantity and the maximum expected profit are developed. The

statistical properties of the two estimators are explored for both small and large samples, analytically

and through Monte-Carlo simulations. For small samples, both estimators are biased. The form of

distribution of the optimal order quantity estimator depends upon the critical fractile, while the

distribution of the maximum expected profit estimator is always left-skewed. Small samples properties

of the estimators indicate that, when the critical fractile is set over a half, the optimal order quantity is

underestimated and the maximum expected profit is overestimated with probability over 50%, whereas

the probability of overestimating both quantities exceeds again 50% when the critical fractile is below a

half. For large samples, based on the asymptotic properties of the two estimators, confidence intervals

are derived for the corresponding true population values. The validity of confidence intervals using

small samples is tested by developing appropriate Monte-Carlo simulations. In small samples, these

intervals attain acceptable confidence levels, but with high unit shortage cost, for the case of maximum

expected profit, significant reductions in their precision and stability are observed.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A single-period inventory model handles inventory policies for
products whose demand lasts one inventory cycle (or one period).
In its classical form, which is described in Khouja [14], the
inventory decision aims at determining a single order quantity
that maximizes the expected profit per inventory cycle. The term
‘‘expected’’ refers to two mutually exclusive events that occur at
the end of the inventory cycle: (a) demand is overestimated, and
so a stock for the product remains at the end of the period, or (b)
demand is underestimated, in which case some customers cannot
be satisfied. To derive the expected profit, together with the
selling price and the salvage value, the following two cost
elements per unit of product are considered: the purchase cost
and the shortage cost. The optimal order quantity that maximizes
expected profit is determined by equating the probability of the
demand not to exceed the order quantity to the critical fractile.
The latter is a function of the price, the salvage value and the two
cost elements. Schweitzer and Cachon [23] state that when the
critical fractile is greater (less) than 0.5, the product is classified as
high-profit (low-profit) product.

For single-period inventory models, most of the research has
focused on specifying optimal inventory policies under the
assumption that parameters of the demand distribution are
known. However, the extent of applicability of such models to
managerial aspects of inventories depends on the estimation of
demand parameters. Berk et al. [5] recognize two general
approaches for demand estimation: the Frequentist and the
Bayesian. According to the Frequentist approach, point estimates
for the unknown parameters of the known parametric demand
distribution are obtained using historical data. On the other hand,
Bayesian methodology is based on a ‘‘prior’’ distribution for the
demand parameter, which is constructed based on collateral data
or subjective assessment. From the prior distribution, the
corresponding posterior distribution is generated as new data of
demand become available. This posterior distribution of the
unknown parameter is used to estimate, first, the posterior
distribution of demand and, second, the optimal order quantity
and the optimum value of the objective function.

Another classification concerns the capability of observing
demand for inventory cycles for which stockouts occur. So, we
have methods that assume that demand is fully observed and
methods that consider the demand over the stocking level as not
observed and therefore being considered as lost. In the latter case,
appropriate adjustments in the estimation procedure are made to
account for the unobserved component of demand. Lau and Lau
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[18] classify works in lost sales environments to two groups.
Works in the first group estimate the parameters of the demand
distribution using sales data, which, for some inventory cycles, are
censored by stockouts. Works in the second group offer recursive
form(s) to update forecasts for demand parameters (such as mean,
variance or mean absolute deviation) and are suitable for non-
stationary demand patterns.

In the area of demand estimation, the majority of papers being
classified in at least one of the above taxonomies focus their
interest on studying how specific problems of demand estimation
affect the quality of the estimated parameters, without addressing

any optimization problem. Indicative examples constitute the
works of Nahmias [22] and Agrawal and Smith [2]. Nahmias
[22] considered the order quantity as given at the stage of
developing and evaluating a sequential procedure for estimating
and updating the parameters of a normally distributed demand
when sales are lost due to stockouts. Modeling demand by the
negative binomial distribution, Agrawal and Smith [2] developed
a parameter estimation methodology, first when demand is
fully observed, and second when demand equals the inventory
whenever there are stockouts. The methodology effectiveness was
demonstrated by ‘‘artificially’’ truncating sales data and comparing
the resulting estimates to those obtained using full data.

Research on studying the effects of demand estimation on
optimal inventory policies for single-period inventory models is
limited. Conrad [7] presented how to estimate from sales data the
unknown parameter of Poisson distributed demand and showed
that using sales data as a proxy for demand can result in order
quantities other than optimal, especially with a significant
number of stockouts. Hill [10] performed analytical and numerical
comparisons of the Frequentist approach against the Bayesian for
three distributions (Exponential, Poisson and Binomial), using
expected values of the optimal order quantity and the minimum
expected cost, whose functional forms included estimates of the
demand parameter. The same direction had the paper of Hill [11],
which modeled the number of demands per customer per
inventory cycle by a Poisson distribution with an unknown mean
l, and the size of an individual customer demand by an unknown
distribution with known mean, second moment about the origin
and variance. Bell [4] related the optimum order quantity to a set
of recursive formulae, which updated forecasts for the average
demand and the mean absolute deviation using exponential
smoothing. To handle high percentages of stockouts, in the
recursive form of the mean absolute deviation, Bell used the
expected variance conditional upon the observed stockout.

Using a Bayesian Markov decision process, Ding et al. [8]
showed that, with a general continuous demand distribution, the
optimal inventory level in the presence of lost sales is higher as
compared to the uncensored case. So, having available a higher
inventory level in early inventory cycles, the additional informa-
tion available for demand estimation can lead to better decisions
in later inventory cycles. Similar conclusions were reported by
Lariviere and Porteus [17] who considered Bayesian updating of
demand distributions with unobserved lost sales using dynamic
programming and modeling demand as a special case of an
exponential distribution with a gamma conjugate prior. Wang and
Webster [25] reported that in practice managers may have
preferences other than the assumption of risk-neutrality, the
latter based upon selecting the order quantity to maximize
expected profit. So, using a single ‘‘kinked’’ piecewise-linear
loss-aversion utility function to model managers’ decision-making,
Wang and Webster found that a loss-averse newsvendor facing low
(high) shortage cost will order less (more) than the risk-neutral
newsvendor. On the other hand, Wu et al. [26] showed that with
stockout cost the risk-averse newsvendor does not necessarily order
less than the risk-neutral newsvendor when the objective function

has a mean-variance form, deriving the exact conditions under
which this will happen when demand follows the power
distribution. Finally, Chahar and Taaffe [6] showed that a conditional
value-at-risk approach results in fewer worst-case profit scenarios as
compared to the expected profit solution in the case where an
order will either come in at a predefined level or will not come
in at all.

In the current paper, we consider the classical single-period
inventory model with demand sizes in consecutive inventory
cycles to be independent and identically distributed normal
random variables with the same mean and variance. Assuming
that demand is fully observed for each period, a different
approach for studying the effects of demand estimation on the
optimal inventory policies is followed. This approach is focused on
exploring the variability of estimates for the optimal order
quantity and the maximum expected profit, which is caused by
the sampling distribution of the estimated parameters of demand.
Incorporating the maximum likelihood estimators for the mean
and variance into the forms that determine the optimal order
quantity and the maximum expected profit, we develop for the
latter two variables appropriate estimators whose statistical
properties are investigated. Although in finite samples both
estimators are biased, we show that they are consistent, and
asymptotically they converge to normality. Based on their
asymptotic properties, we derive confidence intervals for the true
optimal order quantity and the true maximum expected profit,
whose validity is tested in small samples by developing appro-
priate Monte-Carlo simulations. Symbols and acronyms, which
are used in the analysis, are explained in the text as and when
required. Besides, for the reader’s convenience, Appendix A
provides a list of all the symbols and acronyms being used
throughout this paper.

2. Estimators for the optimal order quantity and the
maximum expected profit

Let Dt=m+et be the demand size for period t, with m the average
demand and et’s a sequence of independent and identically
distributed normal random variables with zero mean and
constant variance s2. Denote also by p the selling price per unit,
c the purchase (or production) cost per unit, v the salvage value,
and s the shortage penalty cost per unit. Under the previous
specifications, the profit function per period for the classical
newsboy problem is given in [14] as

p¼
ðp� cÞQ � ðp� vÞðQ � DtÞ if Q � Dt Z0;

ðp� cÞQþsðQ � DtÞ if Q � Dt o0;

(
ð1Þ

where Q is the order quantity. Denoting by jz and Fz the density
function and the distribution function, respectively, of the
standard normal evaluated at z=(Q�m)/s, the expected value of
(1) is derived in Silver et al. [24], and is given by

EðpÞ ¼ ðp� cÞm� ðc � vÞQ � ðp� vþsÞsGðzÞ

¼ ðp� cÞQþsðQ � mÞ � ðp� vþsÞfðQ � mÞFzþsjzg; ð2Þ

where G(z)=jz�(Q�m)(1�Fz)/s.
The optimal order quantity, Q*, maximizing (2), satisfies the

equation

Fz ¼ Pr Zr
Q � m
s

� �
¼ PrðZrzRÞ ¼

p� cþs

p�vþs
¼ R;

which leads to Q*=m+zRs, with zR to be the inverse function of the
standard normal evaluated at R. The ratio R=(p�c+s)/(p�v+s) is
called critical fractile [23]. Replacing Q with Q* into (2), the
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