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In this paper, we propose an iterative approach to jointly solve the problems of tactical safety stock

placement and tactical production planning. These problems have traditionally been solved in isolation,

even though both problems operate in the same decision making space and the outputs of one naturally

serve as the inputs to the other. For simple supply chain network structures, two stages and one or

many products, we provide sufficient conditions to guarantee the iteration algorithm’s termination.

Through examples, we show how the algorithm works and prove its applicability on a realistic

industrial-scale problem.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The strategic-tactical-operational framework developed by
Anthony (1965) is ingrained in the operations-management
lexicon. In a classic manifestation of this framework, determining
how much production capacity to have and where to have it are
strategic decisions, determining how to allocate production
capacity to product families is a tactical decision, and producing
an item-level production schedule is an operational decision. Not
only do these decisions operate at different frequencies (i.e., a
company does not evaluate its capacity acquisition strategy on a
weekly basis), they also operate with different levels of scope and
granularity. For example, setting the production schedule for the
next day requires a precise statement of every item at each
location while a biannual capacity acquisition study aggregates
items beyond the product family to product types that represent
major market segments by manufacturing origin.

The literature that addresses supply chain aspects of Anthony’s
(1965) framework is vast. Even with attention limited in scope to
production–inventory problems, researchers must make hard
choices to limit the scope and granularity of their models. We
will restrict our attention to the large subset of the literature that
models the interaction of tactical production planning with a
number of other production–inventory problems. This subset can
be divided into approaches that break the problems into a

hierarchy of decisions and approaches that solve a monolithic
unified model.

Hax and Meal (1975) propose a hierarchical solution procedure
that spans capacity planning through detailed scheduling. The
hierarchical planning approach relies on aggregating data for
higher-level decisions and having the optimal decisions from each
higher-level model serve as a constraint for the next-lower model
in the hierarchy.

Bitran et al. (1981) solves the production allocation and item-
level scheduling problems for a multiple-item single-echelon
system. Family and item disaggregation subsystems are both
represented by means of knapsack problems. Bitran et al. (1982)
expands this approach to a two-echelon system. While the
application of the framework to the two-echelon setting is
conceptually straightforward, problem-specific knowledge must be
exercised to determine the appropriate aggregation structure.
Specifically, the solution to the aggregate top-level model does not
ensure the existence of a feasible disaggregation for the item-level
problem. To ensure feasibility, it is necessary to either add sufficient
conditions at the aggregated planning level (Gfreer and Zapfel,
1995), or apply an iterative scheme in the hierarchical structure
(Jornsten and Leisten, 1995).

Billington et al. (1983) and Bradley and Arntzen (1999) are
representative of monolithic approaches. Billington et al. (1983)
simultaneously determine the stage lead-times and the item-level
production plan. To ease the computational burden, product
structure compression is employed to collapse stages that do not
influence the resulting solution. Compression works well in cases
where only a few resources are constrained. Bradley and Artzen
develop a monolithic mathematical program to address strategic
capacity acquisition, tactical production planning, and operational
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scheduling. The decision variables are capacity investments, raw
material purchases, and the production schedule. The objective
function maximizes return on assets. For this class of modeling,
demand is deterministic so inventory represents time-phased
imbalances between production and demand. Neither model
explicitly considers setting safety stock levels, although exogen-
ously determined safety stocks could be incorporated as con-
straints. Spitter et al. (2005) and Fandel and Stammen-Hegene
(2006) are indicative of the advances in this line of modeling.
Spitter et al. (2005) is similar in spirit to Billington et al. (1983)
but allows capacity for an order to be allocated any time during
the leadtime. Fandel and Stammen-Hegene (2006) improve the
production plan by considering general lot sizing and scheduling
across multiple machines.

Byrne and Bakir (1999) adopts a hybrid simulation-analytical
approach to protect a production plan against operational sources of
variability. A linear program generates an optimal production plan
and then a simulation verifies the feasibility of the production levels.
The solution procedure adjusts capacity between successive itera-
tions until capacity constraints are satisfied. Kim and Kim (2001)
propose an extended linear programming model and include more
information during iterations for a similar hybrid approach.
Numerical analysis shows that their approach can find a better
solution in fewer iterations than Byrne and Bakir (1999).

De Kok and Fransoo (2003) present a problem to coordinate
the release of materials and resources across a multi-echelon
network. They refer to this as the supply chain operations
problem (SCOP) and present two solution methods. One approach
formulates a linear program (LP) that assumes starting inven-
tories are zero. They then conduct a simulation to determine the
appropriate safety stock levels to support the plan and then rerun
the linear program. The second approach assumes synchronized
base stock (SBS) policies and analytically computes the resulting
base stock levels. For a set of test problems, the SBS approach
outperforms the LP approach.

While Byrne and Bakir (1999), Kim and Kim (2001), and De
Kok and Fransoo (2003) are notable exceptions, the majority of
the literature does not focus on the determination of safety stock
inventory. Hax and Candea (1984) is indicative of the more
standard approach where tactical production planning problems
and detailed operational scheduling are clearly laid out with
established linkages but safety stock is determined exogenously
and at best serves as a constraint to production planning and
scheduling models. Maxwell et al. (1983) explicitly recognize this
problem and propose a three-phase modeling framework to
recognize the relationship between lead time, capacity, lot sizes,
and safety stock. They propose phase one as creation of the master
production plan, phase two as planning for uncertainty, and phase
three as real time resource allocation. Safety stock setting is the
key problem in phase two since it provides protection for the
created master production plan.

Our work takes a different philosophical perspective, concep-
tually outlined in Kempf (2004). In effect, this research approach
is iteratively solving the phase one and phase two problems
outlined by Maxwell et al. (1983). We propose a procedure to
iteratively solve two optimization problems: the tactical problem
of production planning and the tactical problem of safety stock
placement. The value of this approach is it integrates two well-
developed research streams, allowing the joint solution to
overcome the limitations of each individual approach while
simultaneously preserving the optimality, within constraints, of
each individual solution.

Each research stream has made significant advancements in
isolation. The area of tactical safety stock optimization is summar-
ized in Graves and Willems (2003). In brief, tactical safety stock
optimization seeks to optimize inventory levels across the

multi-echelon supply chain. To accomplish this, these approaches
must make additional assumptions and settle for heuristic solutions
relative to the exact solutions that can be derived when the problem
scope is limited to single-stage inventory problems. On the positive
side, papers including Billington et al. (2004) and Bossert and
Willems (2007) document that these models have been successfully
applied in practice.

The area of tactical production planning has a vast associated
literature. Beyond the articles referenced earlier, summary over-
views are provided by Shapiro (1993) and Fleischmann and Meyr
(2003). For our purposes, we are concerned with linear-program-
ming based approaches that minimize the sum of production cost,
inventory cost, and penalty cost over a tactical horizon that often
measures 12–24 weeks. A specific example of a relevant
formulation is presented in Bean et al. (2005).

The rest of the paper is arranged as follows: Section 2 describes
the iteration algorithm. Section 3 establishes termination criteria
for a two-stage single-echelon network producing either one or N

products. Section 4 shows the implementation of the algorithm
for a realistic industrial-scale planning problem. Section 5
concludes and describes future research.

2. An iterative algorithm

The supply chain is modeled at the SKU-location level as a
graph with node set N and arc set A. Every stage corresponds to a
processing function. Examples include transportation from one
location to another, manufacturing, and placement in a ware-
house to satisfy demand. Arcs denote the precedence relationship
between stages. We will find it useful to partition N into three
disjoint sets: NS, NI, ND. The set of supply stages, NS, have no
incoming arcs and demand stages, ND, have no outgoing arcs. The
set of intermediate stages, NI, each have at least one incoming arc
and one outgoing arc. Inventory will only be held at the end of
stages in NI, after their processing activity has completed. NS and
ND can be thought of as dummy stages which are required to
populate data for the model.

We model a production system with stationary demand
operating under a periodic review policy. Demand must be filled
in the period it arrives, otherwise it is lost. The ending inventory
for any internal stage j in period t is found by the balance equation

Ij,t ¼ Ij,t�1þPj,t�Tj
�
X

k:ðj,kÞAA

Sj,k,t ð1Þ

where Pj,t is the quantity started at stage j in period t, Sj,k,t is the
quantity shipped from stage j to stage k in period t. Tj is stage j’s
processing lead time. The ending inventory for stage j is the
starting inventory plus the units that started at stage j. Tj time
periods ago minus the units stage j ships out.

Production minimums are introduced to enforce a practical
policy that if a stage is designed to produce a certain product, it is
always required to make at least a minimum amount of this
product every period. This is a common occurrence in many
industries ensuring the stage maintains its capability to produce a
product according to the designed tolerances. Planners usually
impose a minimum production amount for each product assigned
to each plant (Intel, 2005 and Intel, 2006).

The tactical production planning problem is formulated as a
linear program P1
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