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a b s t r a c t

This paper reconsiders the lost-sales inventory system studied by Hill (2007). The commonly assumed

policy to apply to the system is a pure base-stock policy (PBSP) for which the best base stock is easily

found. Hill shows that his simple delay policy (SDP) and full delay policy (FDP) perform better. The SDP

is a (s,d) policy where s is the base stock of the best PBSP and d is a common lower bound on the delay

between the placement of successive replenishment orders. We show by simulation that the d value

suggested by Johansen (2001) outperforms Hill’s suggestion and that the performance often can be

further improved by optimizing d. For the test bed investigated by Hill, we show that, for some

parameter settings, an additional improvement is achieved when s and d are optimized simultaneously.

The policy suggested by Johansen performs better than the FDP in all settings where the former policy

reduces the average cost of the best PBSP by at least 1%.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

We reconsider the lost-sales inventory system studied by Hill
(2007). The system has Poisson demand with rate l, continuous
review and a fixed lead time L. There is a holding cost h per unit
per unit time and a penalty p per unit lost. The objective is to
minimize the long-run average cost per unit time subject to the
condition that all replenishments are unit sized. This condition is
met without loss of optimality when, as assumed by Hill, there is
no fixed order cost because then economies of scale are lacking.
However, unless l is relatively big, a good replenishment policy
satisfying the condition for a positive fixed order cost can be
found if p is computed as the difference between the lost sales
cost per unit and the fixed order cost.

The considered system can describe slow-moving but impor-
tant and possibly expensive spare parts for which the replenish-
ment lead time is relatively long. When demand for such parts
occurs during a stockout, the demand is lost to the regular control
system because it is satisfied (at an extra cost) by some other
means. For the retail sector, the system can describe high-value
goods for which a customer demand is lost if the item is not in
stock. Both applications often have Poisson demand with a rate l
which is not relatively big. Then a continuous review model
provides a reasonable representation of the system.

The commonly assumed policy to apply to the system is a pure
base-stock policy (PBSP). It prescribes to maintain the inventory
position (the sum of the stock in hand and the stock on order) at
some base-stock level s. Hence, if the initial inventory position
equals the chosen s, then a new replenishment order for one unit
is placed immediately whenever a demand is satisfied. As
explained in Section 2 it is straightforward to find the best base
stock sPBSP for the PBSP. However, Hill (1999) has shown that a
PBSP can never be optimal if sPBSP41, which applies for most
realistic parameter settings. Johansen (2001) and Hill (2007) offer
better solutions by suggesting modified base-stock policies
(MBSPs) which impose some minimum delay between the place-
ment of successive replenishment orders. The intuitive reason for
such a minimum is that, if we shortly after placing an order place
another one, then we are very likely to be in stock when the
second order arrives and therefore we would be increasing stock
with a very small likelihood of that unit being immediately
needed.

In this paper we investigate by simulation how the considered
system performs when it is controlled by different MBSPs speci-
fied by a pair (s,d), where s is the base stock and the lower delay
bound is fixed as d. The investigated policies are related to (and
some of them improve) the MBSPs suggested by Johansen
and Hill.

The paper is organized as follows. Section 2 provides a brief
review of related literature. Our simulation models of the MBSPs
are presented in Section 3. Numerical results obtained by the
simulation models are reported and discussed in Section 4 and
Section 5 contains our conclusion.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

0925-5273/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.ijpe.2012.02.021

n Tel.: þ45 871 55806; fax: þ45 861 31769.

E-mail address: sgj@imf.au.dk

Int. J. Production Economics 143 (2013) 379–384

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2012.02.021
mailto:sgj@imf.au.dk
dx.doi.org/10.1016/j.ijpe.2012.02.021


2. Related literature

Bijvank and Vis (2011) provide a good review of lost-sales
inventory theory. The authors present a classification scheme for
the replenishment policies most often applied in literature and
practice. They notice that their scheme does not include policies
that are optimal in a lost-sales setting. For systems with contin-
uous review, which can be implemented by using transactions
reporting (Hadley and Whitin, 1963, p. 159), they conclude that
there are hardly any comparisons with an optimal policy. The
reason for this conclusion is that such systems are very difficult to
analyze in general. The difficulties can be overcome for systems
which have an optimal policy prescribing at most one order
outstanding at any time. However, the inventory system consid-
ered by us only has this property if sPBSP ¼ 1, which is a very
restrictive condition.

For the PBSP with base stock s, the stock on hand equals the
difference between s and the stock J on order. When the lead
times are mutually independent with mean L (and, in particular,
constant as assumed in this paper), it is well known (Zipkin, 2000,
Section 7.2.3) that J is specified as the number of busy servers in
an M=G=s=s system with traffic intensity r¼ lL and that the long-
run fraction of demand lost is given by Erlang’s loss formula

BðsÞ ¼
rs

s!Ps
j ¼ 0

rj

j!

:

The average stock on order is

JðsÞ ¼ r½1�BðsÞ�,

and the long-run average cost per unit time is

C ðsÞ ¼ plBðsÞþh½s�JðsÞ� ¼ ½plþhr�BðsÞþh½s�r�:

It is straightforward to find the base stock sPBSP which minimizes
this cost function because it is convex in s. Convexity follows from
the fact that BðsÞ is convex in s (Jagers and Van Doorn, 1986).

Hill (2007) explores three alternative policies which might
offer better solutions than the PBSP. Two of his alternative
policies are MBSPs, which he refers to as the simple delay policy
(SDP) and the full delay policy (FDP), with base stock sPBSP. His
third policy is a fixed order policy (FOP). The FOP places orders at
fixed and regular intervals of time t. Hence, the stock on hand is
modeled as a D=M=1 queue with arrivals occurring at fixed
intervals of length t and exponential service times having mean
1=l. Hill shows how to find the best t for the FOP and he reports
that there may be some situations in which the FOP with the best
t offers a realistic alternative to the PBSP. We do not investigate
the FOP further in this paper because it is not a good policy for the
parameter values investigated in our numerical study.

Hill’s SDP is a ðsPBSP,dHÞ policy where

dH ¼
�lnð1�h=ðlpÞÞ

l
: ð1Þ

His FDP requires that a suggested delay is computed each time a
sale occurs or an order is placed. The procedure for computing
each suggested delay of the FDP is a myopic heuristic. When a
sale occurs or an order is placed, the suggested delay T is
computed by this heuristic based on information about the actual
state of the system. If the next sale occurs within the time interval
of length T, then a new value of T is computed at the sale epoch. If
not, the FDP places the next order after the suggested delay and
then a new T value is computed. We agree with Hill in the
conclusion that the FDP is ‘‘less likely to be operationally
acceptable’’. Moreover, his SDP and FDP are dominated by better
policies as we demonstrate in our numerical study.

The periodic review lost-sales model where L is an integral
number of review periods and there is no fixed order cost, has
been studied by many authors. Zipkin (2008) provides several
earlier references and he investigates for short lead times (L is at
most four review periods) how various policies specified by
plausible heuristics perform relative to the optimal periodic-
review policy which he computes by value iteration. He con-
cludes, based on a numerical study, that several of the investi-
gated policies perform reasonably well, but that the base-stock
policy, with base stock computed as for a backlog system, per-
forms poorly. However, the PBSP specified by the best base stock
for the lost-sales system performs better. For a large class of
demand distributions, Huh et al. (2009) have shown that the
relative difference between the cost of the optimal policy and the
best PBSP converges to zero when the lost-sales penalty p

becomes large compared to the holding cost rate h.
Johansen (2001) presents a policy-iteration algorithm for

finding the policy which is optimal for the periodic review model
with Poisson demand subject to the condition that s, defined as
the largest sum of the stock on hand and the number of units
under delivery for the policy found by the algorithm, does not
exceed some integer S. He suggests initially to apply the algo-
rithm with S equal to an easily computed base stock s, say, of a
good PBSP and to repeat applying the algorithm for S incremented
by one until the same policy is found by the algorithm for the last
two S values. This stop rule ensures for the final S that the optimal
value of s is S�1. For L¼10 and various values of l and the
parameters h and p, he reports the long-run average cost per
review period for the found optimal policy and three other
policies. The first of these is the PBSP with base stock s, whereas
the others are MBSPs. The second policy is the MBSP with base
stock s and lower delay bound d specified as L=s round off to an
integer number of review periods (so that each replenishment
order is placed at a review epoch). The third policy is the best
MBSP. The reported results (and numerous others) illustrate that
the second and third policies provide most of the cost reductions
which can be obtained by replacing the best PBSP by the optimal
policy. The second policy is easy to compute, whereas extensive
computations are needed to find the third policy. Because the
second policy is often a good choice, Johansen recommends to
implement it. If the length of the review period is decreased and
approaches zero, the periodic review model approaches the
continuous review model and no round off is needed when the
lower delay bound of the second policy is specified as

dJ ¼ L=sPBSP: ð2Þ

Therefore, Johansen suggests to control the continuous review
system by the ðsPBSP,dJÞ policy.

3. Simulation models

3.1. Performance of a (s,d) policy

For an MBSP specified by (s,d), we redefine J as the sum of the
number N of delayed units and the number of single-unit orders
outstanding at the supplier. Hence, the stock on hand remains
specified as s�J and we can evaluate the performance of the
policy based on information about how J and N evolve over time.
A demand occurring when J¼s is lost. When Jos at a demand
epoch, the demand becomes a sale and the policy prescribes to
increment N by one if either N is already positive or the time since
the last placement of an order is shorter than d. If not, a
replenishment order is placed immediately at the supplier. Dur-
ing periods where N40, the policy prescribes to place an order at
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