A change detection method for sequential patterns

Chieh-Yuan Tsai *, Yu-Chen Shieh

Department of Industrial Engineering and Management, Yuan Ze University, Taiwan

A R T I C L E I N F O

Article history:
Received 29 August 2007
Received in revised form 4 September 2008
Accepted 15 September 2008
Available online 25 September 2008

Keywords:
Sequential patterns
Change mining
Pattern matching
Customer behaviors

A B S T R A C T

Recent trends in customer-oriented markets drive many researchers to develop sequential pattern mining algorithms to explore consumer behaviors. However, most of these studies concentrated on how to improve accuracy and efficiency of their methods, and seldom discussed how to detect sequential pattern changes between two time-periods. To help business managers understand the changing behaviors of their customers, a three-phase sequential pattern change detection framework is proposed in this paper. In phase I, two sequential pattern sets are generated respectively from two time-period databases. In phase II, the dissimilarities between all pairs of sequential patterns are evaluated using the proposed sequential pattern matching algorithm. Based on a set of judgment criteria, a sequential pattern is clarified as one of the following three change types: an emerging sequential pattern, an unexpected sequence change, or an added/perished sequential pattern. In phase III, significant change patterns are returned to managers if the degree of change for a pattern is large enough. A practical transaction database is demonstrated to show how the proposed framework helps managers to analyze their customers and make better marketing strategies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sequential pattern mining is the technique that explores frequently occurring patterns related to time from a large-scale database. It has been applied to web log mining [5], customer purchase behavior analysis [10], DNA sequence analysis [11], project team coordination [22], retailing management [8], and so on. Previous studies related to sequential pattern mining mainly focused on how to build accurate models or how to discover interesting rules in efficient ways. AprioriAll [1], GSP [29], PrefixSpan [27], FFS [32], and SPAM [3] are some well-known algorithms that efficiently identify sequential patterns. In addition, other efforts have concentrated on sequential pattern mining in multi-databases [18] with constraints [7], time-intervals [9], and fuzzy sets [6]. Relatively few attempts have been made to analyze sequential pattern changes in databases collected over time [19]. However, some popular patterns at one time-period may not be valid in another time-period [4]. For example, the sequential pattern “Computer --> Memory --> Color_Printer” is frequent in the last year. However, this pattern might not be popular in this year but change to “Computer --> Memory --> Multifunctional_Printer.” If managers cannot capture this dynamic behavior change in time and provide appropriate products or services to their customer, customer attrition will be unavoidable.

There have been many existing works focusing on dynamic aspects or comparison between two different datasets. They can be broadly classified as four research trends [4, 23, 28]. The first trend is to improve rule matching accuracy when new transaction data are constantly added to the original transaction database. El-Sayed et al. [14] introduced an efficient strategy for discovering frequent patterns in sequence databases that requires only two scans of the database. Koh and Shieh [17] proposed an algorithm of APFIM (Adjusting FP-tree for Incremental Mining) based on adjusting FP-tree structures to maintain frequent itemsets discovered in a changing database. The algorithm only scans changed data in the database, and adjusts FP-tree structures to enhance the efficiency of mining association rules. Masegla et al. [24] proposed an efficient algorithm, called incremental sequence extraction (ISE), to compute frequent sequences in an updated database. The algorithm minimizes computational costs by re-using the minimal information from the original database. Lee et al. [21] proposed a SWF (sliding-window filtering) algorithm, which uses a filtering threshold to deal with the candidate itemset generation. The algorithm has not only significantly reduced I/O and CPU costs but also effectively controlled memory utilization. The second research trend is to discover emerging patterns. Emerging pattern mining gauges significant changes or differences from one database to another [12]. Fan and Ramamohanarao [15] developed an algorithm which applied the minimum support, the minimum growth rate and chi-squared values to extract interesting emerging patterns. Terlecki and Walczak [30] presented the relations between rough set and jumping emerging patterns. They proposed practical applications of these observations to the minimal reduced problem and to test whether a given attribute set is differentiating.

* Corresponding author. Department of Industrial Engineering and Management, Yuan Ze University, No. 135, Yuan tung Rd., Chungli City, Taoyuan County, Taiwan. Tel.: +886 3 463 8801x2512; fax: +886 3 463 8907.
E-mail addresses: cytsai@saturn.yzu.edu.tw (C.-Y. Tsai), f8902045@hotmail.com (Y.-C. Shieh).

© 2008 Elsevier B.V. All rights reserved.

0167-9236/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2008.09.003
The third research trend is subjective interestingness mining. Interestingness mining is used to find unexpected rules with respect to the user’s existing knowledge. Padmanabhan and Tuzhilin [25] developed methods to generate unexpected patterns with respect to managerial intuition by eliciting managers’ beliefs about the domain and used these beliefs to seed the search for unexpected patterns in data. The methods provide managers with more relevant patterns from data and aid in effective decision making. Liu et al. [23] proposed a new approach to assist users in finding interesting rules from discovered association rules and analyze subjective interestingness. The approach first asks users to specify his/her existing knowledge such as beliefs or concepts, and then analyzes the discovered association rules to conformity and various interestingness criteria. Padmanabhan and Tuzhilin [26] presented a method for discovering unexpected patterns in data. The method combines independent concepts of minimality and unexpectedness to discover a minimal set of unexpected patterns. Lanquillon [20] proposed the concepts of added rules and perished rules. An added rule is the rule that is hard to be found in the past database, while a perished rule is the rule that is difficult to be found in the present database.

The fourth research trend is to discover regularity from time series data. Han et al. [16] presented several algorithms for efficient mining of partial periodic patterns by exploring some interesting properties related to partial periodicity. The algorithms shows that mining partial periodicity needs only two scans over a time series database to efficiently mine long periodic patterns. Yu et al. [31] proposed a granulation-based method to find similarities between two time series. The granulation-based method deals with problematic temporal data mining tasks such as similar subsequence searching, clustering and indexing etc. Altiparmark et al. [2] proposed a novel approach for information mining between time series data. They utilized frequent itemset mining as well as clustering and declustering approach for information mining between time series data. They claimed that the dissimilarity between any mismatched elements should be smaller than the dissimilarity between two datasets, their discussions are limited to association rules and element change position. therefore, if the element change position is rare position is preferred, because the number of elements in a sequence is a sequence database D containing sequence a is called the support of a, denoted as Sup(a). Given a sequence database D and user specified minimum support \(\gamma_{min} \), a sequence is a sequential pattern in D if Sup(a) \(\geq \gamma_{min} \). The sequential pattern mining problem is to find the complete set of sequential patterns with respect to D and \(\gamma_{min} \).

2.2. Dissimilarity measurement

Let \(D' \) and \(D'' \) be the databases (or datasets) at time-period t and \(t+1 \) respectively, where \(D' \) and \(D'' \) are disjoint. \(S' \) and \(S'' \) represent the discovered sequential pattern sets from \(D' \) and \(D'' \) respectively, \(s'_1 \) and \(s''_1 \) indicate individual sequential patterns in the corresponding sequential pattern sets \(S' \) and \(S'' \) respectively, where \(i = 1, 2, ..., |S'| \) and \(j = 1, 2, ..., |S''| \). Sup(s_i) represents the support of \(s'_1 \) in \(D' \) and Sup(s''_1) represents the support of \(s''_1 \) in \(D'' \).

The dissimilarity between \(s'_1 \) in \(S' \) and \(s''_1 \) in \(S'' \) is defined based on the following three considerations. First, the higher the number of mismatched elements between \(s'_1 \) and \(s''_1 \), is the higher the dissimilarity is. For instance, we have \(s''_1: A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \), \(s'_1: A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \). If \(s''_1 \) is compared with \(s'_1 \), there are two among the six elements mismatched (2/6). However, when \(s''_1 \) is compared with \(s''_2 \), only one among six elements are mismatched (1/6). It is reasonable to claim that the dissimilarity between \(s'_1 \) and \(s''_1 \) is greater than the dissimilarity between \(s'_1 \) and \(s''_2 \).

Second, the position of the element changed in a sequence is taken into consideration based on the following observation. Assume that we have a sequence s and a sequential pattern set D. To predict what element(s) will appear after s, we will match the elements in s with the prefix elements of all patterns in D. For example, D = \{“A -> B -> C -> D”, “A -> B -> C -> E”, “A -> B -> F -> G”, “A -> B -> H -> J”\}. If \(s = “A -> B -> C” \), the patterns “A -> B -> C” and “A -> B -> C -> E” are matched. Thus, two elements (subsequences) “C” or “E” could appear next if s is inputted. On the other hand, if \(s = “A -> B -> C” \), the patterns “A -> B -> C -> E”, “A -> B -> F -> G”, “A -> B -> H -> J” are matched. Thus, four subsequences “C -> D”, “C -> E”, “F -> G”, or “H -> J” could appear next. It is clear that if number of elements in s is fewer, the number of patterns matched is higher. This also implies that the prediction accuracy is low since there are many possible outcomes when s is known. Based on this observation, the change between two patterns appears in the rare position is prefer, because the number of matched elements is more.

Therefore, if the element change position from \(s'_1 \) and \(s''_{1'} \) is later than the one from \(s'_1 \) and \(s''_{2'} \), the dissimilarity between \(s'_1 \) and \(s''_{1'} \) should be smaller than the dissimilarity between \(s'_1 \) and \(s''_{2'} \). For example, we have \(s''_{11}: A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \), \(s''_{12}: A \rightarrow B \rightarrow C \rightarrow E \rightarrow F \). The alternation from \(s''_{11} \) to \(s''_{12} \) is in position four (three common prefix elements between \(s''_{11} \) and \(s''_{12} \), while the alternation from \(s''_{12} \) and \(s''_{17} \) is in position three (two common prefix elements between \(s''_{12} \) and \(s''_{17} \)). Thus, we claim that the dissimilarity between \(s''_{11} \) and \(s''_{12} \) is smaller than the dissimilarity between \(s''_{12} \) and \(s''_{17} \).

Third, the dissimilarity between any mismatched elements should be evaluated. For example, we have \(s''_{11}: A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \), \(s''_{11}: A \rightarrow B \rightarrow C \rightarrow E \), \(s''_{12}: A \rightarrow B \rightarrow C \rightarrow F \). In addition, element D contains items (p, q, x, y, z), element E contains items (m, n, o, q, r). It is obvious that both the change from \(s''_{11} \) to \(s''_{12} \) and the change from \(s''_{11} \) to \(s''_{12} \) are one element mismatched. However, the dissimilarity between D in \(s''_{11} \) and \(s''_{12} \)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات