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A b s t r a c t - - I n  this article, we start with the brief description of the essence of geometric moment 
theory method for optimization of integrals due to Kemperman [1-3]. Then, we solve several new 
Moment problems with applications to stock market and financial Inathenlatics. That  is, we give 
methods for optimal allocation of funds over stocks and bonds  at maximum return. More precisely, 
we present here the optimal portfolio management under opt imal  se lect ion of securit ies  so to maximize 
profit. The above are done within the models of optimal frontier and optimizing concavity. @ 2006 
Elsevier Ltd. All rights reserved. 

K e y w o r d s - - M o m e n t s  and geometric moment theory, Optimal portfolio management, Problem of 
optimal frontier, Concavity. 

1. I N T R O D U C T I O N  

Tile  m a i n  p r o b l e m  we solve here  is t h e  o p t i m a l  a l l o c a t i o n  of  f u n d s  over  s tocks  a n d  b o n d s  a n d  

at  t h e  s a m e  t ime ,  g iven  c e r t a i n  level  of e x p e c t a t i o n ,  b e s t  choice  of s ecu r i t i e s  on  t h e  p u r p o s e  to  

m a x i m i z e  r e t u r n .  T h e  r e su l t s  are  ve ry  gene ra l  so t h a t  t h e y  s t a n d  b y  t h e m s e l v e s  as " fo rmulas"  

to  t r e a t  o t h e r  s imi la r  s t o c h a s t i c  s i t u a t i o n s  a n d  s t r u c t u r e s  far  away  f rom t h e  s tock  m a r k e t  a n d  

f inanc ia l  m a t h e m a t i c s .  T h e  answers  to  t h e  above  d e s c r i b e d  p r o b l e m  are  g iven  u n d e r  two m o d e l s  

of inves t ing ,  t h e  o p t i m a l  f ron t i e r  a n d  o p t i m i z i n g  concavi ty ,  as b e i n g  t h e  m o s t  n a t u r a l .  

T h e r e  are  g iven  m a n y  e x a m p l e s  all m o t i v a t e d  f rom f inanc i a l  m a t h e m a t i c s  a n d  of course  f i t t i ng  

a n d  w o r k i n g  well  t he re .  T h e  m e t h o d  of p r o o f  der ives  f r o m  t h e  g e o m e t r i c  m o m e n t  t h e o r y  of 

K e m p e r m a n ,  see [1-3], a n d  severa l  new m o m e n t  r e su l t s  of ve ry  g e n e r a l  n a t u r e  are  p r e s e n t e d  

here.  We  s t a r t  t h e  a r t i c le  w i t h  bas ic  g e o m e t r i c  m o m e n t  r ev iew a n d  we show t h e  p r o v i n g  too l  we 

use n e x t  r epea t ed ly .  

To t h e  b e s t  of  our  knowledge  t h i s  p a p e r  is t o t a l l y  new in  l i t e r a t u r e  as a who le  a n d  n o t h i n g  

s imi la r  or p r io r  to  i t  in  any  fo rm ex is t s  t he re .  We  h o p e  i t  is well  r ece ived  by  t h e  c o m m u n i t y  of 
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mathemat ica l -economis ts  and tha t  can be useful there, by giving some definite real answers to 
existing questions in opt imal  portfolio theory. 

The  cont inuat ion of this work will be one to derive algori thms out  of this  theore t ica l  work and 

create computer  software of implementa t ion  and work with  ac tua l  numerical  d a t a  of the stock 

market .  

2. B A C K G R O U N D  

GEOMETRIC MOMENT THEORY. (See [1 3].) Let g l , . . . ,  g~, and h be given real-valued (13 n A) 
(Borel and A)-measurab le  functions on a fixed measurable  space T = (T, A) .  We also assume 

tha t  all one-point  sets {t}, t • T are (B n A)-measurable .  We would like to find the  best  upper  
and lower bounds  on the integral,  

# ( h ) =  / • h ( t ) # ( d t ) ,  

given tha t  # is a (with respect  to A) probabi l i ty  measure on T with  given moments ,  

~ ( g j )  - ~ j ,  j = 1 , . . . , n .  

We denote by m + = m+(T) the collection of all A-probab i l i ty  measures  on T such t ha t  #(IgJ[) < 

cc (j  = 1 , . . . , n )  and #(Ihl) < oc. For each y = ( y ~ , . . . , y n )  • R n, consider the  bounds  L(y) = 
L(y I h) = i n f# (h ) ,  U(y) = U(y I h) = sup#(h ) ,  such tha t  

# • m  +(T);  # ( 9 j ) = y j ,  j = l , . . . , n .  

If there  is not  such measure #, we set L(y) = ec, U(y) = - o c .  Let  M+(T)  be the set of all 

probabi l i ty  measures on T tha t  are finitely suppor ted.  By the next  Theorem 1, we get  t ha t  

and 

L ( y  I h) = inf { # ( h ) : #  • M + (T) ,  #(g) = y} (1) 

u (y I h) -- sup { ,  ( h ) : ,  e M ÷ (T), , ( g )  = y} .  (2) 

Here, #(g) = y means #(gj) = yj, j = 1 , . . . , n .  

THEOREM 1. (See [4-6].) Let f l , - - . ,  fN be given real-valued Bore1 measurable functions on a 
measurable space f~ ~- (f~, S ) .  Let # be a probability measure  on ~ such tha t  each fi is integrable 
with respect to #. Then, there exists a probability measure  #' or finite support on f~ satisfying 

#' (fj) = # ( f j ) ,  for ally = 1 , . . . , N .  

One can even attain that tlle support of #' has at most N + 1 points. 

Hence, from now on, we deal  only wi th  finitely suppor ted  probabi l i ty  measures  on T. Conse- 

quently, our ini t ial  problem is res ta ted  as follows. 

Let  T ~A ~ set and g: T --~ R ~, h: T --~ R be given (B N A)-measurab le  functions on T, where 

g(t) = ( g l ( t )  . . . .  ,gn(t)) .  We want  to find L(y I h) and U(yl  h) defined by (1) and (2). 
Here, a very impor t an t  set is 

V = c o n v  g (T) c_ R n, 

where "cony" means convex hull, and the range, 

g ( T )  = { z • N ~ : z = g ( t )  for s o m e t • T } .  

Clearly, g is a curve in n-space (if T is an one-dimensional  interval) or a two-dimensional  surface 
in n-space (if T is a square).  
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