
Consulting past exceptions to facilitate workflow

exception handling

San-Yih Hwanga,*, Jian Tangb

aDepartment of Information Management, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
bDepartment of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X5

Accepted 30 September 2002

Abstract

In this paper, we propose an architecture model that deals with both expected and unexpected exceptions in the context of

workflow management. Expected exceptions and their handling approaches are specified by ECA rules, while cases of

unexpected exceptions are characterized by their features and resolution approaches. The handling of unexpected exceptions is

then assisted by the system providing information about how recent similar cases were resolved. The ways in which the

previous exception cases were handled provides useful information in determining how to handle the current one. Quantifying

the similarity of exception cases is described, and three algorithms for efficiently searching for similar exception cases are

proposed and evaluated both theoretically and by experimenting with synthetic data sets.

D 2002 Elsevier B.V. All rights reserved.

Keywords: Workflow exceptions; Workflow management; Exception handling; Similarity matching

1. Introduction

Workflow management systems (WFMSs) support

the execution of business processes. A business proc-

ess has a market-centred aim of fulfilling a business

contract or satisfying a customer’s needs [13], and

typically, it is controlled by many factors, including

the description of the constituent activities, their

control/data flow, the potential participants, the organ-

ization model and the referenced data [31]. A WFMS

separates the specification of business processes, or

so-called workflow types, from their execution and

provides a convenient and powerful means of specify-

ing a business process and controlling its executions.

However, it is well recognized that defining a work-

flow that represents all properties of the underlying

business process is difficult [10]. Moreover, since the

formulation of business processes occurs at a high

conceptual level, workflows have to adapt rapidly to a

changing environment, resulting in executions that

deviate from the predefined plan.

The process model defined at specification simply

represents a standard case, and WFMSs should

provide the flexibility to support run-time modifica-

tion to the defined workflows so as to handle non-

standard cases, or so-called exceptions. Some types

of exceptions are expected because they are known

to occur occasionally or periodically, and their char-

0167-9236/$ - see front matter D 2002 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-9236(02)00194-X

* Corresponding author.

E-mail address: syhwang@mis.nsysu.edu.tw (S.-Y. Hwang).

www.elsevier.com/locate/dsw

Decision Support Systems 37 (2004) 49–69



acter and the associated way of handling them can be

completely decided at build-time. Other exceptions are

unexpected since they result from unpredictable

changes in the environment, being unable to decide

how to handle the exception, or from some other factor

that simply cannot be predicted at design-time. It has

been observed that exceptions occur rather frequently

in real working environments [11,27]. This highlights

the importance of exception handling in the context of

workflow management.

1.1. Related work

The need for handling workflow exceptions has

been identified by several researchers and research

projects in recent years (e.g. EXOTICA [1], METEOR

[27], ADOME [7,8], ADEPT [23,24], WAMO [11],

and WIDE [6]). Most research has focused on the

handling of expected exceptions whose character

can be anticipated at build-time. To keep the logic

of the normal process clean, exceptions and their

handling approaches are usually not incorporated

into standard workflow types. Instead, another more

flexible mechanism is adopted to support explicit

modelling of these exceptions. Two approaches that

are typically used to implement this mechanism are

the extended transaction model and event–condi-

tion–action (ECA) rules. An extended transaction

model requires the workflow designer to specify

some properties of the constituent activities and

sub-workflows, such as compensatible, retriable,

and alternating activities. When an exception occurs,

the workflow system handles it according to the

given attribute values of the involved activities or

sub-workflows. A typical situation would be to roll-

back activities to a particular point by executing

the corresponding compensating activities in reverse

order. An alternative path would then be taken

when continuing the execution [1,12,21]. Another

approach is to use ECA rules, or so-called triggers

[6–8]. The ECA paradigm describes an exception

type as a particular ECA rule. The event and the

condition of an ECA rule describe the situation

under which the associated exceptions occur, and

the action part defines the operations that would

resolve these exceptions. Possible operations include

notifying responsible persons, ignoring exceptions,

retrying the activity that causes exceptions, partial

rollback followed by forward execution, adding some

extra activities, deleting some planned activities, or

any change to the part of the workflow definition

that is not yet executed. Recently, Hagen and Alonso

[14] proposed a framework that integrates rules1

and an extended transaction model for handling work-

flow exceptions. Participants in the ADEPT project

also proposed an approach which involved evaluating

the correctness of changes to workflow schema

[23,24]. While previous work has focused on provid-

ing flexible mechanisms for defining exceptions at

build-time, there is a need to handle exceptions that

are not defined at build-time. These exceptions are by

no means uncommon and, in some cases, could be

substantial.

Cases not specified by the defined workflow

types require special treatment. Even though a

WFMS may be capable of executing any exception

resolution plan that is specified in a particular

format, deriving an appropriate solution for handling

a given exception is currently conducted in a

manual, ad hoc manner, which involves numerous

meetings and discussions with authorized and

knowledgeable persons. We proposed [29] providing

a query interface to enable users to browse the

information related to the workflow instance to

which an exception occurs. In the proposal, a query

is specified in terms of attributes of constituent

activities which include, for example, input and

output values, the date and time, and details of

the performers. By examining the attribute values

returned by a number of queries, the user makes an

appropriate decision on how to handle the current

exception. Chiu et al. [8] proposed the Human

Interface Manager for handling unexpected excep-

tions. This device handles exceptions by listing

common approaches that serve as suggested reso-

lutions, and allows users to visualize all the recent

methods that have been used to resolve exceptions.

However, exactly how to provide a list of suitable

resolutions for a given exception in a changing

environment was not discussed in detail.

1 In their work, the exception model in C++ or Java, rather than

ECA rules, is used to combine with an extended transaction model.

However, we consider this exception model to be the same as ECA

rules in spirit.

S.-Y. Hwang, J. Tang / Decision Support Systems 37 (2004) 49–6950



http://isiarticles.com/article/21745

