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a b s t r a c t

High dimensionality comparable to sample size is common in many statistical problems. We examine
covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the
sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is
employed to reduce dimensionality and to estimate the covariance matrix. The factors are observable
and the number of factors K is allowed to grow with p. We investigate the impact of p and K on
the performance of the model-based covariance matrix estimator. Under mild assumptions, we have
established convergence rates and asymptotic normality of the model-based estimator. Its performance
is compared with that of the sample covariance matrix. We identify situations under which the factor
approach increases performance substantially ormarginally. The impacts of covariancematrix estimation
on optimal portfolio allocation and portfolio risk assessment are studied. The asymptotic results are
supported by a thorough simulation study.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Covariance matrix estimation is fundamental for almost all
areas of multivariate analysis and many other applied problems.
In particular, covariance matrices and their inverses play a central
role in portfolio risk assessment and optimal portfolio allocation.
For example, the smallest and largest eigenvalues of a covariance
matrix are related to the minimum andmaximum variances of the
selected portfolio, respectively, and the eigenvectors are related to
optimal portfolio allocation. Therefore, we need a good covariance
matrix estimator inverting which does not excessively amplify the
estimation error. See Goldfarb and Iyengar (2003) for applications
of covariancematrices to portfolio selections and Johnstone (2001)
for their statistical implications.
Estimating high-dimensional covariance matrices is intrinsi-

cally challenging. For example, in optimal portfolio allocation and
portfolio risk assessment, the number of stocks p, which is typi-
cally of the same order as the sample size n, can well be in the
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order of hundreds. In particular, when p = 200 there are more
than 20,000 parameters in the covariancematrix. Yet, the available
sample size is usually in the order of hundreds or a few thousand
because longer time series (larger n) increases modeling bias. For
instance, by taking daily data of the past three years we have only
roughly n = 750. So it is hard or even unrealistic to estimate co-
variance matrices without imposing any structure (see the rejoin-
der in Fan (2005)).
Factor models have been widely used both theoretically and

empirically in economics and finance. Derived byRoss (1976, 1977)
using the Arbitrage Pricing Theory (APT) and by Chamberlain and
Rothschild (1983) in a large economy, the multi-factor model
states that the excessive return of any asset Yi over the risk-free
interest rate satisfies

Yi = bi1f1 + · · · + biK fK + εi, i = 1, . . . , p, (1)

where f1, . . . , fK are the excessive returns of K factors, bij, i =
1, . . . , p, j = 1, . . . , K , are unknown factor loadings, and ε1, . . . , εp
are p idiosyncratic errors uncorrelated given f1, . . . , fK . The factor
models have been widely applied and studied in economics and
finance. See, for example, Ross (1976, 1977), Engle and Watson
(1981), Chamberlain (1983), Chamberlain and Rothschild (1983),
Diebold andNerlove (1989), Fama and French (1992, 1993), Aguilar
and West (2000), Bai (2003), Ledoit and Wolf (2003), Stock and
Watson (2005) and references therein. These are extensions of the
famous Capital Asset PricingModel (CAPM) and can be regarded as
efforts to approximate the market portfolio in the CAPM.
Thanks to the multi-factor model (1), if a few factors can

completely capture the cross-sectional risks, the number of
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parameters in covariance matrix estimation can be significantly
reduced. For example, using the Fama-French three-factor model
(Fama and French, 1992, 1993), there are 4p instead of p(p +
1)/2 parameters to be estimated. Despite the popularity of factor
models in the literature, the impact of dimensionality on the
estimation errors of covariance matrices and its applications to
optimal portfolio allocation and portfolio risk assessment are
poorly understood so, in this paper, determined efforts are made
on such an investigation. To make the multi-factor model more
realistic, we allow K to growwith the number of assets p and hence
with the sample size n. As a result, we also investigate the impact of
the number of factors on the estimation of covariance matrices, as
well as its applications to optimal portfolio allocation and portfolio
risk assessment. To appreciate the derived rates of convergence,
we compare them with those without using the factor structure.
One natural candidate is the sample covariance matrix. This
also allows us to examine the impact of dimensionality on the
performance of the sample covariancematrix.Wewill assume that
the factors are observable as in Fama and French (1992, 1993). Our
results also provide an important milestone for understanding the
performance of factor models with unobservable factors.
The traditional covariance matrix estimator, the sample covari-

ance matrix, is known to be unbiased, and it is invertible when
the dimensionality is no larger than the sample size. See, for ex-
ample, Eaton and Tyler (1994) for the asymptotic spectral distri-
butions of randommatrices including sample covariance matrices
and their statistical implications. In the absence of prior informa-
tion about the population covariance matrix, the sample covari-
ance matrix is certainly a natural candidate in the case of small
dimensionality, but no longer performs very well for moderate or
large dimensionality [see, e.g. Lin and Perlman (1985) and John-
stone (2001)]. Many approaches were proposed in the literature
to construct good covariance matrix estimators. Among them, two
main directions were taken. One is to remedy the sample covari-
ance matrix and construct a better one by using approaches such
as shrinkage and the eigen-method, etc. See, for example, Ledoit
and Wolf (2004) and Stein (1975). The other one is to reduce
dimensionality by imposing some structure on the data. Many
structures, such as sparsity, compound symmetry, and the autore-
gressive model, are widely used. Various approaches were taken
to seek a balance between the bias and variance of covariance ma-
trix estimators. See, for example, Wong et al. (2003), Huang et al.
(2006), and Bickel and Levina (2008).
The rest of the paper is organized as follows. Section 2

introduces the estimators of the covariance matrix. In Section 3
we give some basic assumptions and present sampling properties
of the estimators. We study the impacts of covariance matrix
estimation on optimal portfolio allocation and portfolio risk
assessment in Section 4. A simulation study is presented in
Section5,which augments our theoretical study. Section6 contains
some concluding remarks. The proofs of our results are given in the
Appendix.

2. Covariance matrix estimation

Wealways denote by n the sample size, by p the dimensionality,
and by f1, . . . , fK the K observable factors, where p grows with
sample size n and K increases with dimensionality p. For ease of
presentation, we rewrite the factor model (1) in matrix form

y = Bnf+ ε, (2)

where y = (Y1, . . . , Yp)′, Bn = (b1, . . . , bp)′ with bi =
(bn,i1, . . . , bn,iK )′, i = 1, . . . , p, f = (f1, . . . , fK )′, and ε =
(ε1, . . . , εp)

′. Throughout we assume that E(ε|f) = 0 and
cov(ε|f) = 6n,0 is diagonal. For brevity of notation, we suppress

the first subscript n in some situations where the dependence on n
is self-evident.
Let (f1, y1), . . . , (fn, yn) be n independent and identically

distributed (i.i.d.) samples of (f, y). We introduce here some
notation used throughout the paper. Let

6n = cov(y), X = (f1, . . . , fn),
Y = (y1, . . . , yn) and E = (ε1, . . . , εn).

Under model (2), we have

6n = cov(Bnf)+ cov(ε) = Bncov(f)B′n + 6n,0. (3)

A natural idea for estimating 6n is to plug in the least-squares
estimators ofBn, cov(f), and6n,0. Therefore, we have a substitution
estimator

6̂n = B̂nĉov(f)̂B
′

n + 6̂n,0, (4)

where B̂n = YX′(XX′)−1 is the matrix of estimated regression
coefficients, ĉov(f) = (n − 1)−1XX′ − {n(n − 1)}−1X11′X′ is the
sample covariance matrix of the factors f, and

6̂n,0 = diag
(
n−1̂E Ê′

)
is the diagonal matrix of n−1̂E Ê′ with Ê = Y − B̂X the matrix of
residuals. If the factor model is not employed, then we have the
sample covariance matrix estimator

6̂sam = (n− 1)−1 YY′ − {n (n− 1)}−1 Y11′Y′. (5)

Ledoit and Wolf (2003) propose an interesting idea of
combining the single-index (K = 1, CAPM) model based estima-
tion of the covariancematrix with the sample covariancematrix to
improve the estimate of the covariance matrix. It aims at a trade-
off between the bias and variance of the two estimated covariance
matrices for practical applications.
In the paper we mainly aim to provide a theoretical under-

standing of the factor model with a diverging dimensionality and
growing number of factors for the purpose of covariance matrix
estimation, but not to compare with other popular estimators.
Throughout the paper, we always contrast the performance of the
covariance matrix estimator 6̂ in (4) with that of the sample co-
variance matrix 6̂sam in (5). The paper also provides a theoretical
study on the two estimators used in the procedure of Ledoit and
Wolf (2003). With prior information of the true factor structure,
the substitution estimator 6̂ is expected to perform better than
6̂sam. However, this has not been formally shown, especially when
p → ∞ and K → ∞, and this is not always true. In addition,
exact properties of this kind are not well understood. As the prob-
lem is important for portfolio management, determined efforts are
devoted in this regard.

3. Sampling properties

In this section we study the sampling properties of 6̂ and
6̂sam with growing dimensionality and number of factors. We give
some basic assumptions in Section 3.1. The sampling properties are
presented in Section 3.2.
In the presence of diverging dimensionality, one should

carefully choose appropriate norms for large matrices in different
situations. We first introduce some notation. We always denote by
λ1(A), . . . , λq(A) the q eigenvalues of a q× q symmetric matrix A
in decreasing order. For any matrix A = (aij), its Frobenius norm is
given by

‖A‖ =
{
tr(AA′)

}1/2
. (6)
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