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Abstract

A new mixed-integer programming (MIP) formulation is presented for the production planning of single-stage multi-product processes. The
problem is formulated as a multi-item capacitated lot-sizing problem in which (a) multiple items can be produced in each planning period, (b)
sequence-independent set-ups can carry over from previous periods, (c) set-ups can cross over planning period boundaries, and (d) set-ups can be
longer than one period. The formulation is extended to model time periods of non-uniform length, idle time, parallel units, families of products,
backlogged demand, and lost sales.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

To remain viable in today’s highly competitive economy,
chemical firms must use advanced planning methods to optimize
their supply chains, from procurement and manufacturing to dis-
tribution and sales (Chopey, 2006; Grossmann, 2005). At the
same time, product customization and diversification have led
to larger numbers of final products, while the economic environ-
ment requires low inventories and higher utilization of existing
units (Papageorgiou & Pantelides, 1996; Shobrys & White,
2002). Thus, different products are often produced in multi-
product facilities, where limited resources are shared among
competing tasks. Therefore, the economic impact of effective
production planning methods can be significant. Furthermore,
production planning is a hard optimization problem due to its
combinatorial nature, and thus academically challenging.

The goal in production planning is to meet customer demand
over a fixed time horizon divided into planning periods by
optimizing the trade-off between economic objectives such as
production cost and customer satisfaction level (Stadtler, 2005).
The major decisions are production and inventory levels for each
product in each planning period. To address production planning
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problems, research efforts have tried to adapt solution methods
that have been successful for other applications. For some prob-
lems, however, the proposed approaches are insufficient because
short-term decisions need to be taken into account to obtain good
solutions. This can be accomplished by integrating production
planning with detailed scheduling models. However, this leads
to large optimization problems that are intractable for practical
applications. Thus, despite all efforts that have gone into devel-
oping methods for the simultaneous production planning and
scheduling of chemical plants, this remains a hard optimization
problem (Crama, Pochet, & Wera, 2001; Kallrath, 2000; Pinto
& Grossmann, 1998; Shapiro, 2004; Shah, 2005).

In this paper we develop a mixed-integer programming (MIP)
formulation for the multi-item capacitated lot-sizing problem
for a single processing unit. The proposed formulation over-
comes several limitations of previous approaches. Most existing
methods assume that if an item is produced in two consecutive
periods, then it requires a set-up in each period. Furthermore,
set-ups are assumed to begin and finish within the same time
period and therefore are required to be shorter than that planning
period. In the proposed formulation we relax these assumptions
by allowing: (a) set-ups to carry over from previous periods, (b)
set-ups to cross over planning period boundaries, and (c) set-
ups to be longer than one planning period. By allowing set-ups
to carry over, redundant set-ups are not required whenever the
last item in a time period is the same as the first item in the
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Nomenclature

Indices
f family, f ∈ F = {1, 2, . . . NF}
i product (state, item), i ∈ I = {1, 2, . . . NI}
j unit, j ∈ J = {1, 2, . . . NJ}
t planning period (time bucket), t ∈ {TB1, TB2, . . .

TBN}

Sets
AI i ∈ AI ⊆ I if production of i can be interrupted by

idle time
If i ∈ If ⊆ I if i is in family f. Products in the same

family use the same set-up

Parameters
bi backlog cost of product i
ci holding cost of product i
dit demand due of product i at end of time bucket t
dMIN
it minimum demand due of product i at end of time

bucket t
h, ht length of planning period t
I0
i initial inventory of product i

ri production rate of product i
γ i set-up cost of product i
δ small positive number
πi lost sales penalty for product i
τi set-up time of product i

Continuous variables
Cost objective function
Iit inventory of product i at the end of time bucket t
Idlet amount of time in time bucket t in which no pro-

duction occurs
Latet length by which ending boundary of time bucket t

is delayed. Also is the length of set-up still uncom-
pleted at the unmodified boundary

Pit production level (amount) of i in time bucket t
Sit number of set-ups for product i beginning in time

bucket t
TSCt total cost of set-ups beginning in time bucket t
TSTt total time of set-ups beginning in time bucket t

Continuous variables (extensions)
Bit backlog of product i at the end of time bucket t
Eit extra sales of product i in time bucket t
Idleit amount of time in time bucket t in state i in which

no production occurs
Lit lost sales of product i in time bucket t
Pjit production level of i in time bucket t on unit j
TSCjt total cost of set-ups beginning in time bucket t on

unit j

Binary variables
Wt =1 if modified time bucket t is operated in SIP

mode

Xit =1 if i is the ending state of modified time bucket
t

X̂it =1 if set-up of product i crosses over the ending
boundary of time bucket t

Yit =1 if modified time bucket t is operated in RP
mode, starting and ending in state i

Zit =1 if state i is visited in modified time bucket t

following time period. By allowing set-ups to cross over period
boundaries, set-ups may begin in one period and finish in a later
period, thus better utilizing capacity. By allowing set-ups to be
longer than planning periods, we gain the flexibility to discretize
the planning horizon into periods of shorter and/or non-uniform
length.

This paper is arranged as follows: In Section 2 we describe
the production planning problem of interest, we discuss previ-
ously proposed methods, and we give the problem statement. In
Section 3 we present the assumptions, basic concepts, and prop-
erties underlying our approach. In Sections 4 and 5 we present
our mathematical formulation. In Section 6 we illustrate the
applicability of the proposed approach through four example
problems.

2. Background

2.1. Problem statement

In production planning we seek optimal decisions for produc-
tion activities that transform raw materials into final products.
Formally, we are given:

(i) A known planning horizon divided into N uniform or non-
uniform time periods (i.e. time buckets), t ∈ {TB1, TB2, . . .
TBN}.

(ii) A set of products (items), i ∈ {A, B,. . .} with customer
demand dit due at the end of time period t and holding
cost ci.

(iii) Resource constraints: these may include unit and utility
capacities, as well as raw material availability.

(iv) Production costs: these may include variable and fixed
costs.

Optimization decisions are:

(i) the production level (amount) Pit of item i in period t,
(ii) the inventory level Iit of item i at the end of period t, and

(iii) the production cost TSCt in period t.

The standard production planning problem assumes that it
is possible for customer demand to be satisfied completely and
on time. In this case, the objective is to fulfill customer demand
at minimum total (i.e. production + inventory) cost. A network
representation of the standard production planning problem is
shown in Fig. 1. Inventory Ii,t−1 at the beginning of period t and
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