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a b s t r a c t

This note investigates the study by Teunter (2004) [1] on lot sizing for inventory systems
with product recovery where lot sizing formulae for two recovery policies ((1, R) and
(P, 1)) are derived. Instead of applying the classical optimization technique, we develop
an integrated solution procedure for each of the two policies using algebraic approaches.
Numerical analysis show that our examples result in a lower total cost for both policies.

© 2010 Published by Elsevier Ltd

1. Introduction

Teunter [1] developed two lot sizing models with product recovery. In the first model, one production lot is alternated
with R recovery lots, or (1, R) policy. For the othermodel, P production lot is alternatedwith one recovery lot, or (P, 1)policy.
He derived two integrated total production inventory costs and three decision variables. They are the optimal production
lot size (Q ∗p), the optimal recovery lot size (Q ∗r ) and the number of recovery (R) or the production lots (P). The values ofQ ∗p
and Q ∗r are solved using partial differential equations. Corresponding to Q ∗p and Q ∗r , the values of R or P are then derived.
Since R and P must be discrete, the author modified Q ∗p and Q ∗r , so that R or P was discrete. In this paper, we suggest
an integrated solution procedure to solve Q ∗p and Q ∗r using a simple algebraic method without derivative. This method is
simple and it is helpful for students who are not familiar with calculus.
There has been some research on solving an optimal solution without derivative and three methods are used widely.

The methods are algebraic approach, cost-difference comparison method and arithmetic–geometric mean inequality.
Grubbstorm [2] was the first to show that a standard economic order quantity model could be solved using an algebraic
approach or without using derivative. Grubbstorm and Erdem [3] extended the approach by allowing backorder and
Cardenas-Barron [4] applied the algebraic approach to solve the classical economic production quantity (EPQ) model with
shortage. Yang and Wee [5] developed an integrated vendor–buyer inventory system derived without derivatives. Wee
et al. [6] developed an EOQ model with temporary sale price derived without derivatives. Other researchers who used
the algebraic approaches are Chang et al. [7] who solved EOQ and EPQ model with shortage, Sphicas [8] who solved EOQ
and EPQ with linear and fixed backorder cost, Wee and Chung [9] who solved the economic lot size for an integrated
vendor–buyer inventory system, Cardenas-Barron [10] who used the approach to solve an N-stage-multi-customer supply
chain model and Cardenas-Barron [11] who solved inventory policies of immediate rework process model and N-cycle
rework process model. Chung and Wee [12] developed an optimal economic lot size for a three-stage supply chain with
backordering derived without derivatives. Cost-difference comparison method was introduced by Minner [13] and Wee
et al. [14] extended the method by simplifying the solution procedure. Teng [15] was among the first researchers to derive
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Notations

d demand rate (unit per time)
f return fraction (unit per time)
p production rate (unit per time)
r recovery rate (unit per time)
Kp ordering (setup) cost per production lot ($ per setup)
Kr ordering (setup) cost per recovery lot ($ per setup)
hr holding cost per recoverable item per time unit ($ per unit per time)
hs holding cost per serviceable item per time unit ($ per unit per time)
Qp production lot size (unit)
Qr recovery lot size (unit)

Assumptions:

1. The return rate is equal to fdwhere 0 < f < 1.
2. Production rate and recovery rate are larger than demand rate.
3. All return items are recovered.

EOQ using arithmetic–geometric mean inequality. Cardenas-Barron [16] extended the method and solved EOQ and EPQ
model with backorder and Cardenas-Barron [17] presented a discussion on the use of arithmetic–geometric mean method.

2. Optimal solution without derivative

This section shows how the two models using algebraic approaches are solved. To compare our results with Teunter, we
use the same notation and assumptions as [1].

2.1. Model 1: (1, R) policy

In the (1, R) policy, manufacturer has one production setup and R rework setups per cycle. The following cost expression
of the total inventory cost per unit time is obtained from Eq. (1) of [1]:
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From Eq. (2) of [1],

RQr(1− f ) = Qpf . (2)

After rearranging, one has:

Qr =
Qpf

R(1− f )
. (3)

Teunter [1] differentiated (1) with respect to Q ∗p and Q ∗r and equating the result to zero, such that:
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Since R has to be discrete, Teunter modify the optimal R so that the variable is discrete. The modification formulae for
(1, R)model is:

Q̃p
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f

(5)

where

R̃(1,R)
= max{1, [R(1,R)

]} (6)

is the positive integer nearest to R(1,R).
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