Cost analysis of pipes for application in sewage systems

Shahram MortezaNia *, Faridah Othman

Civil Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Article history:
Received 13 July 2010
Accepted 20 January 2011
Available online 16 March 2011

Abstract

The work described in this study is a preliminary effort to identify the most cost effective pipe material for application in sewage collection networks. Firstly, cylindrical concretes coated by epoxy (Ep), polyurethane (PU), and combination of epoxy and sodium silicate (Ep–SS) were tested to investigate coatings ability to protect concrete samples against corrosion. Secondly, the price of the cured concrete (CC) pipe by designed coatings was compared to that of a new concrete network. Economic analysis was then carried out to compare the prices of the CC and double wall corrugated high-density polyethylene (DWC-HDPE) pipes. The outcomes revealed that the designed coating materials were able to lengthen the concrete pipes service life. They acted as a barrier against the aggressive environment, and were able to reduce the corrosion rate in the piping system. By using the designed coatings, it was at least 1.5 times more economical compared to replacing it with new pipes. The CC pipes have been found to be more cost effective than DWC-HDPE pipes for pipes diameter larger than 600 mm. A computer program was provided based on the developed mathematical models which could aid engineers in nominating the proper pipe for optimum cost saving and performance.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete, asbestos, iron, plastic, etc. pipe materials are being used for sewer networks. Due to its compatibility with the environment, huge material resources, cost effectiveness, more resistant and strength, concrete has been the most widely construction material [1] used in sewers, treatment plants, and open channels. However, concrete suffers from deterioration and rapid degradation of concrete structures has been reported in wastewater facilities. This degradation is due to the acidic environments mostly generated by bacterial activities [2].

Abrasion-resistant interior to withstand scouring action of wastewater carrying gritty materials, durability for long life, adequate strength to resist failure or deformation under loads, and impervious walls to prevent leakage are physical characteristics essential for sewer pipes. Besides, resistance of pipe material to chemical attacks (e.g. corrosion) is important enough to be considered in selecting the proper pipe material. Fig. 1a shows an example of load deformation, while Fig. 1b demonstrates the corrosion attack captured by a CCTV placed in a sewage network in Malaysia.

Corrosion deterioration has long-term effect on environment, economy, and society [3,4]. The evaluation of current and future corrosion damage of concrete pipes in sewer networks during their service life has become imperative for engineers which results as aging decrement of the network. Thus, shortens their remaining service life, requires funding for repair or replacement. Due to the high cost and the difficulty of repairing the deteriorated parts, it is required that the material should be long lasting [5]. Hence, economical and effective techniques are needed to prevent or control corrosion deteriorations in particular areas of sewers especially where H2S generation is common. The rate of hydrogen sulfide generation in sewers depends on sewage parameters such as pH, temperature, and turbulence, and so forth [6]. Over the time (usually, about 5–30 years), dissolved sulfates in water penetrates the hardened concrete and causes deterioration [7]. The cracks initiated at the concrete surface by chemical reaction of sulfates, propagate into the concrete core which lead to an increase in diffusivity, permeability, and porosity of concrete structure [1,8,9]. Control technologies that can be used to overcome this issue include using acid resistant materials, using chemical or biological treatments, and optimizing the sewer hydraulic design [1,4,10].

To protect concrete structures from physical, chemical, or biological degradation and increase their durability, high performance protective surface coating materials can be used. The coatings can stay in contact with concrete and provide long-term effective protection under severe condition with low maintenance costs [11,12]. Sulfuric acid is one of the main substances produced in corrosion process. In order to predict the service life of CC
2. Materials and methods

2.1. Materials

The cylindrical concrete samples which represent the concrete pipe with a water per cement (w/c) ratio of 0.36 [18], cement content of 350 kg/m³, Portland cement type V, were used to conduct tests under laboratory condition. The cylindrical concrete is 10 cm in diameter and 20 cm in height.

Two types of organic coating materials and one inorganic coating material were selected as follows:

1. Ep (NP Solvent Coating industrial supply, grey color, \(\rho = 1.5 \text{ g/cm}^3 \), US$16/kg, ratio of wet/dry weight \((V_s) = 1.06 \)).
2. PU (NP Solvent Coating industrial supply, white color, \(\rho = 1.35 \text{ g/cm}^3 \), US$27/kg, \(V_s = 1.07 \)).
3. Ep–SS (SS: R & M chemicals, gel form, 70%, \(\rho = 1.13 \text{ g/cm}^3 \), US$12/kg, \(V_s = 1.04 \)).

2.2. Methods

Before the coating was applied, the concrete surface preparation was conducted according to ASTM C811-98 standard [19] using water pressure and wire brusher to remove any sort of dirt. Ep and PU were applied (100 \(\mu \text{m} \) thickness) on concrete samples with utmost care to cover all surfaces thoroughly without any defect following the supplier recommendations and left in the lab temperature to be completely dry.

The accelerated method, identified as a rapid test [20], is one of the most widely used tests to investigate the chemical resistance of CC. This method can be performed in two ways [21]; i.e. using specimens with large surface area per volume ratio or increasing the aggressive solution (e.g. sulfuric acid) concentration. Monenty et al. [21] proposed to keep the pH of the solution at a certain level (by titration) for accelerated method using sulfuric acid. In addition, the worst condition in the sewer systems is due to sulfuric acid produced by bacteria when the pH reaches the value of less than one, which is approximately similar to the concentration of 1–3% sulfuric acid solution [22].

The CC samples were then weighed \((W_p) \) by a digital balance having a precision of \(\pm 0.001 \). The samples were placed in closed containers (half immersion) filled by 2% and 10% sulfuric acid solution. During the test, the pH of solution was monitored using the Thermo Electron Corporation 3-star portable pH meter to provide a constant condition. The high power magnifying glass 30x LED lighted was also used to visually inspect the samples for the corrosion signs (coating failure types, e.g. blistering, cracking, or flaking [23]). The failures were picked as indicator to evaluate the experimental results to determine the service life of designed coatings. The time of first failure on coated samples immersed in 10% sulfuric acid solution was recorded.

The time taken for a CC to fail after corrosion initiation is related to the thickness of coating material \((L_t) \), the liquid absorption by coating, and the contact time with the liquid. After the designed test period (30-day), samples were taken out of the containers, washed by water, and the damaged parts were removed. According to Lin and Vipulanandan [20], the estimation of the weight changes of the CC structure exposed to aggressive environment is a significant parameter to predict the service life of coating material. When the samples were completely dry, the samples were then
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات