LTE key management analysis with session keys context

Dan Forsberg*

Aalto University, School of Science and Technology, Department of Computer Science and Engineering, P.O. Box 15400, FI-00076 Aalto, Finland

A R T I C L E I N F O

Article history:
Available online 7 July 2010

Keywords:
LTE security
Key management
Handovers
Session keys context
Key separation

A B S T R A C T

Handover key management in mobile wireless networks targets to minimize the effects of a possible key compromise in the access points. We describe and analyze how the new 3GPP Long Term Evolution (LTE) security architecture and handover keying management fulfills this target. We discuss possible LTE handover key management enhancements and implementation alternatives without losing interoperability over the air interface. We have chosen to compare it with our session keys context concept to see what the strengths in both are to get some perspective for deployments that benefit from distributed key management.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Key management for wireless mobile networks has been an active topic. In the past IEEE groups like 802.11 Task Group R, 802.21, and 802.16 (WiMAX) have been working to improve and specify key management techniques. Extensible Authentication Protocol (EAP) working group in the IETF has been working with key hierarchies and key derivation issues [1,2]. IETF PANA (Protocol for carrying Authentication for Network Access) working group has been tackling the issue of mobility optimizations for the PANA protocol [3–5]. Handover keying working group (HOKEY) is also working on efficient key management for handovers [2,6–9].

One of the key requirements in the key management area is to have cryptographically separate keys for every Access Point (AP) [10]. There are different proposals to fulfill this requirement, which is important especially in cases when the encryption of the user plane data packets terminates in the AP (e.g. in LTE, WiMAX, WLAN, and GSM), and not deeper in the network (e.g. like in UMTS). The requirement stems from the threat that if one AP is compromised the effect of the key compromise is as local as possible. However, minimizing the effect of key compromise can be achieved also with e.g. very short-term keys (e.g. renewing key hierarchy with re-authentication).

In this paper, we describe the LTE security architecture [11,12], list handover key management requirements, and describe the keying management in LTE. We compare this with the session keys context (SKC) key management mechanism [13] and analyze how the LTE implementations could be simplified and enhanced without losing the air interface interoperability.

The rest of this paper is organized as follows. Next we describe the LTE system and security architectures, and the LTE key management (Chapter 2). Then, we provide an analysis and different implementation alternatives of the LTE key management (Chapter 3). We describe SKC and compare it with the LTE (Chapter 4). In the end we describe existing key delivery mechanisms for mobile networks and their relation for LTE. Finally, we conclude our paper (Chapter 5).

2. LTE architecture

Third Generation Partnership Project (3GPP) has standardized E-UTRAN as part of the Long Term Evolution (LTE) [14] work based on UMTS [15–17] and GSM. Correspondingly 3GPP also standardized a new Evolved Packet System (EPS) architecture as part of the system architecture evolution work based on UMTS and GSM architecture evolution. LTE and EPS include several enhancements especially from security perspective compared to UMTS and GSM [18].

LTE System Architecture includes LTE radio base stations called as E-UTRAN Node Bs, i.e. eNBs. However, in this paper we refer to base stations, eNBs, and e.g. WLAN APs with the AP term. LTE consists of APs connected to one or multiple control plane Mobility Management Entities (MME) and user plane gateways (SAE GWs). MME is the Key Distributor (KD) in LTE. Both MME and SAE GW reside in the EPS network and connect to the APs through many-to-many S1 interface (see Fig. 1).

LTE is fully optimized for packet data access and it also supports quality of service for different data transfer needs (like VoIP, browsing, download, etc.). There are several new functionalities in LTE radio compared to UMTS. They are namely: (1) higher user data plane bandwidth, (2) longer MN connected state duration, (3)
use of Discontinuous Reception (DRX) in connected state, (4) no MN
Medium Access Control (MAC) level identity, and (5) X2, the direct
interface between APs, and (6) no Radio Network Controller (RNC).

Fig. 2 shows the LTE protocol architecture. In LTE the Non-Acces
Stratum (NAS) signaling protection terminates in the EPS core
network, whilst the RRC and user plane protection terminate in the
AP. User plane carries IP data packets (over Packet Data Conver-
gence Protocol, PDCP), like for HTTP browsing and Voice over IP.

The X2 interface makes E-UTRAN considerably different com-
pared to UTRAN, which does not have a similar interface between
APs. The reason for having X2 is that it allows APs to co-ordinate
the RAN in a distributed manner, making the centralized UTRAN
Radio Network Controller (RNC) unnecessary and thus reducing
the number of network elements for LTE. This also results having
RRC protocol termination in the AP instead of the RNC as in UTRAN.
Confidentiality and integrity protection is on the PDCP layer for
RRC and user plane. The signaling security between the MN and
the core network (NAS layer, see below) is implemented in the sig-
naling protocol itself.

In LTE security is important and targeted to be in the same or
higher level compared to UTRAN [17]. Security on the radio link
(Uu interface) during handovers is the main focus of our paper.

2.1. LTE security architecture

LTE security and privacy requirements are based on the respective
requirements for UTRAN architecture, grouped in five feature
groups [16,17,19], including (I) network access security, (II) net-
work domain security, (III) user domain security, (IV) application
domain security, and (V) visibility and configuration security. For
the analysis and comparison of LTE key management, we are only
interested on the first group, network access security. Network ac-
cess security provides following security features on radio access
link: (1) user identity confidentiality (privacy), (2) entity authenti-
cation, (3) confidentiality, and (4) data integrity.

LTE has made a lot of architectural changes and introduced new
features compared to UTRAN as discussed above. Some of the
changes are described and analyzed from security point of view in
[18].

The LTE security architecture [11] is described in Fig. 3. There are
multiple security associations (SA) in the system. Network SAs
(N-SA1 – N-SA5) protect the signaling and data between network
elements. MN SAs (UE-SA1 – UE-SA3) provide three-layered secu-
ристу for the system. From network perspective the first security
layer is between the MN and the APs (again, called eNBs in LTE).
This layer protects the control plane signaling and the user plane
data, but only the control plane is integrity protected whilst both
are encrypted. This control plane between MN and AP is also called
Access Stratum (AS) signaling. Second layer security is for the con-
троль plane connection between MN and the MME, i.e. the KD. This is
called Non-Access Stratum (NAS) level signaling. Third layer is the
long term SA between the MN and the home network (Home Sub-
scriber Server, HSS) of the subscriber, i.e. the home authentication
server.

The long-term security association between the MN and its
home network is the origin for the key hierarchy. The EPS authen-
tication and key agreement (AKA) protocol uses the long-term key
K between authentication server and the MN and produces 128 bit
CK and 128 bit IK and further the key hierarchy root 256 bit
KASME, which is bound to the serving network identity. This serving
network specific KASME key is sent from authentication server to the
KD. Both the KD and the MN create a 256 bit KSNB from the KASME
and KD transfers this key to the AP. 128 bit AS level control plane
and user plane protection keys are derived from the KSNB in AP and
the MN. Also, 128 bit NAS level control plane keys are created in
KD and MN from the KASME. For both NAS and AS level control plane
there are separate encryption and integrity protection keys. For the
user plane only encryption is specified, thus only an encryption key
is derived for it. The key hierarchy is summarized in the Fig. 4.

LTE has specified that two security algorithms for control plane
and user plane protection must be supported. The mandatory ones
are AES [20] and SNOW 3G [21]. Encryption algorithms use stream
cipher modes and the input parameters are defined along the lines
of UMTS system, namely: 1 bit direction, bearer identifier, 32 bit
COUNT, and length. Direction is either up or down. Bearer id is
an identifier for one of the radio link connections (bearers) be-
 tween MN and the network. COUNT consist an increasing sequence
number carried in each packet plus a hyper frame number that is
maintained in both end points and increased every time the se-
quence number overflows. COUNT is specific for each bearer and
direction. To avoid the key stream repetition a fundamental
requirement is that with the same key one of the parameters must
always be fresh. This is achieved by using the increasing sequence
number with the hyper frame number to assure that every packet
has fresh input parameters for the key stream initialization. For
encryption the key stream is bitwise XORed with the actual data.
For integrity protection the data is fed to the integrity algorithm
and the output is 32-bit integrity checksum for every transferred
packet. Integrity protection has similar input parameters, except
that instead of the length parameter it takes the message itself as
input parameter. It is important to know the input parameters to
the ciphering and integrity protection as these affect the freshness
of the key stream.

The KSNB is specific for an AP and MN, and the derived control
plane and user plane keys are specific also for a radio cell. During
a handover from source AP to the target AP, the KSNB is further
transformed to a new KSNB′ with a Key Derivation Function (KDF).
Further details on the KSNB handling are explained later in this
paper.

There are different lifetimes for the keys in the key hierarchy. The
long-term key K is valid for the whole subscription lifetime

Fig. 2. LTE protocol stack illustration.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی

امکان دانلود نسخه ترجمه شده مقالات

پذیرش سفارش ترجمه تخصصی

امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله

امکان دانلود رایگان ۲ صفحه اول هر مقاله

امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب

دانلود فوری مقاله پس از پرداخت آنلاین

پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات