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When swarming demands cause stringent capacity situations, order promising becomes a challenging
job. However, a dynamic order admission policy by utilizing the concept of revenue management may
find a good way to solve the problem. Unfortunately, the expected profit under different dynamic order
admission policies is sensitive to the estimation error of order forecasts. In this paper, the impact of esti-

mation error is investigated under various order structures. The post analysis is performed and shows sig-
nificant statistical difference among the optimal unbiased DSKP policy, biased DSKP policy, and FCFS
policy. The results reveal the robustness and superiority of DSKP policy in most scenarios.
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1. Introduction

In the make-to-order, business-to-business (MTO B2B) environ-
ments, swarming demand caused by seasonal factor or new prod-
uct launching frequently interfere with daily operations of sales or
product managers. These managers sometimes may fail to fulfill all
order requests because the planning capacity is insufficient to sat-
isfy all demands in the high season. Tool machine, fashion apparel
and shoe making industries frequently face this stringent capacity
problem (Franco, Sridharan, & Bertrand, 1995; Sridharan, 1998).
Evidences show this problem not only bothers the planners of tra-
ditional manufacturing industries, but also annoys the leading
companies in the semiconductor industries, e.g., TSMC, UMC, and
Chartered, etc. (David & Andy, 2007).

To handle this problem, Harris, de, and Pinder (1995) suggested
applying the concept of revenue management to manufacturing
industries. Because their work focused on the manufacturers with
continuous production process, the order admission policy pro-
posed by Harris and Pinder is a kind of inventory rationing policy
for make-to-stock (MTS) environments. This inventory rationing
policy is very similar to the booking limit control in airline, hotel,
or car rental industries. Balakrishnan, Sridharan, and Patterson
(1996, 1999) proposed another heuristic capacity rationing policy
for a MTO company which segments orders into two classes by
their margins. In each class, the number of orders follows Poisson
distributions; therefore, the aggregate demand is an exponential
random variable. Their capacity rationing policy is made according
to the expected value of the approximated class demand. Later,
Barut and Sridharan (2004, 2005) extended their researches for
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multi-class demands and proposed a revised heuristic. However,
some properties of MTO B2B environments had not been captured
in previous researches. For instance, MTO B2B companies usually
have limited business clients for contact and face finite planning
horizon. For each order, its margin and order size are possibly dis-
tinct. Furthermore, it is difficult to identify any specific arriving
pattern of orders in MTO B2B environments. In order to handle
the above characteristics in MTO B2B environments, David and
Andy (2007) reformulated the problem as a discrete Markov Deci-
sion Problem (MDP), or more specifically, a Dynamic and Stochas-
tic Knapsack Problem (DSKP). It turned out that the optimal policy
follows a Markov deterministic policy with revenue-threshold
decision rules.

Unfortunately, all these researches assume that parameters of
order size distributions are known with fixed quantities in their
models. These situations rarely happen in the real world. Produc-
tion and operations managers repeatedly express the view that fore-
casting is a critical activity since the accuracy of the forecast
significantly impacts the quality of operation plans. However, if the
forecast has considerable error, even well-conceived plans and excel-
lent operating performance against the plan may result in very disap-
pointing productivity (Lee & Adam, 1986). Apparently, the more
estimation errors in the forecast, the less willingness planners
are likely to adopt a dynamic order admission policy in practice.
In the researches of Becker, Hall, and Rustem (1994) and Balakrish-
nan et al. (1999), they also concluded that if a model is not sensi-
tive to estimation error, it can make the model more risk-averse
and more attractive for the planners. Based on these statements,
we intend to investigate the impact of different types of estimation
error under various order structure. Three types of estimation error
are discussed including error of spikedness, error of mean, and
error of deviation. Also, various characteristics of order structure
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are explored such as margin attractiveness, capacity tightness,
number of orders, demand lumpiness, and order size variation. Fi-
nally, a post analysis is performed to systematically test the model
robustness and effectiveness of DSKP policy against estimation er-
rors in order size parameters. We believe that understanding the
impact of estimation error with respect to various order structures
can help planners to choose the best policy to be applied.

The remainder of this paper is organized as follows: Section 2
will briefly describes an optimal dynamic order admission proce-
dure for MTO B2B corporations based on David and Andy’s work.
Next, the structure of our experimental design is presented. Also,
the results from our simulation experiments are analyzed in Sec-
tion 4. At last, conclusions and further researches are followed.

2. Optimal order admission policy

A planner must decide whether to accept or reject an order re-
quest when it arrives if the stringent capacity situation happens in
the MTO B2B environments. If the request is accepted, the order re-
cord is created and scheduled into the master production schedule
(MPS).

In the order admission problem, an order can be primarily char-
acterized by two dimensions: the margins and the required capac-
ity of an order. The margin of an order is defined as the gross return
per unit capacity required to fulfill an order. The capacity require-
ment of an order is determined by the capacity consumption in a
bottleneck stage of production process. The margin is known and
predetermined when order arrived. The capacity requirement, also
referred as the size of an order, generally follows a distinguishing
distribution. It is also assumed that demand visibility will increase
for a B2B manufacturer as time passes by. In a normal situation, all

Table 1

Table of notations.

P Real specification and parameter sets of order size distributions
fo Probability mass function of order size distributions

t Decision epoch when the tth order request arrives, t=1,...,T
Ce Available capacity at epoch t

U, Set of potential orders at epoch t

I; The identity of the currently arriving order

X(Ip) The required capacity to fulfill the corresponding order request
& State at epoch t, &(Ce, Uy, I, X)

Ro (&) Revenue threshold at state &,

P(I;) The unit margin of an arriving order I,

a4 g The optimal action, a;, € {0,1}

EVy The expected accrued revenue under the optimal policy

L Semi-state, {; = (C;,U;)

Pr{{;.1|¢;} Transition probability from {; to (¢4

ACC* () The accepted zone under optimal policy

REJ*(¢;) The rejected zone under optimal policy

a* The action under FCFS

EVIF The expected accrued revenue under FCFS

ACCS The accepted zone under FCFS

REJ% The rejected zone under FCFS

[ Estimated specification and parameter sets of order size distributions
SDBD Standardized difference between biased DSKP and DSKP performance
SDBF Standardized difference between biased DSKP and FCFS performance
N The number of orders, N=T

2 Margin of order number n

st Minimum of size of order number n

Sh Maximum of size of order number n

qn Spikedness, it is the parameter of a Bernoulli distribution

P Error multiplier of spikedness

B Error multiplier of mean

b Error multiplier of deviation

e The total revenue brought by DSKP at scenario i replicate k

Vﬁj""gd The total revenue brought by Biased DSKP at scenario i replicate k
Vﬁf‘rs The total revenue brought by FCFS at scenario i replicate k

V/Pskp The expect total revenue brought by DSKP at scenario i

VECEs The expect total revenue brought by FCFS at scenario i
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information about potential orders will be revealed before the end
of planning horizon. The planner is risk-neutral and the objective is
to achieve maximal expected revenue for the peak season.

In reality, the capacity space is finite and size distributions have
a discrete form. Thus, the optimal order admission control can be
modeled by a DSKP. The optimal policy can be proved as a Markov
deterministic policy with revenue-threshold decision rules (David
& Andy, 2007). It has been shown that the revenue improvement
by taking the optimal control under unbiased forecast is huge.

Before we can explore the impact of estimation error on the dy-
namic order admission policy, we need to briefly introduce the
mathematical model of order admission problem in this section.
In Section 2.1, the formulation of the optimal control proposed
by David and Andy (2007) is reviewed, and the notation used in
that order admission problem formulation is summarized at Table
1. In addition, the performance measure used by our simulated
experiments will be defined in Section 2.2.

2.1. Formulation of the optimal order admission control

Let @ denotes the “real” specification and parameter sets of or-
der size distributions. Size of potential orders follows the probabil-
ity mass function f,. Suppose there are T potential orders that may
be arrived in the entire planning horizon. Decision epoch
t=1,2,...,T is a time point when the tth order request arrives.
The events of simultaneous order arrivals, order cancellation, and
urgent orders are assumed to be happened with probability zero.
It should be noted that t actually presents the sequence of order
realization rather than explicit arrival time of orders.

A discrete-time model is constructed to present the dynamic
information process. The state includes four kinds of information,
i.e.,, the available capacity C;, set of potential orders U, identity
of current arriving order I, and its order size X(I;). C; is defined
as the initial available capacity estimated for the planning horizon.
Information state ¢, = (C;,U,, I, X) is observable when the t™ order
information gets confirmed.

I; is a 1 x T index vector for which the n element is 1 if the tth
arrival is order n. U; is a 1 x T index vector, too. Its n™ element is 1
if order n has not arrived yet till epoch t — 1. Uy, being the initial set
of all potential orders, is an index vector with all elements being 1,
i.e,, Uy =[1];,4. The following example is used to illustrate the
meaning of these index vectors. Suppose T =5 and the arriving or-
der at the 3rd decision epoch is order number 2, then
I; =(0,1,0,0,0). If order number 1, 2, and 3 are not realized before
epoch 3, then U; = (1,1, 1,0, 0). The setting of U, and I, gives a nice
property of additivity in policy evaluation procedure. Thus, the U;
set of epoch 4 can be represented as Uy = Uz — Is.

The optimal order admission policy is a kind of revenue-thresh-
old policy. Revenue threshold Rs(¢) represents the opportunity/
displacement cost for accepting an order. Let P(I;) denote the unit
margin of an arriving order I;. Under the revenue-threshold rules,
the optimal action a; , corresponding to the tth order request can
be presented below

1, if X(I) < G and PI)X(L) > Ra(&),
a;(b(ChUhIt»X) = { o ( t) can ( t) ( [) (p(gt)

0, if X(I) > C, or P(I)X(I) < Ra(&,).
(1)

The optimal decision is to accept the current request, i.e.,
a; , = 1, if the potential profit is equal or higher than the revenue
threshold, i.e., P(I)X(I;) > Rs(¢&;). Otherwise, the optimal action is
to reject, i.e., a;, = 0.

The managerial interpretation of the threshold rules is intuitive.
When a request is accepted, a portion of the capacity is preserved
for this order and the total available capacity decreases. But this ac-
tion may also induce an opportunity loss for rejecting later orders.
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