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Valuation of life insurance products under stochastic interest rates
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Abstract

In this paper, we introduce a consistent pricing method for life insurance products whose benefits are contingent on the level of interest rates.
Since these products involve mortality as well as financial risks, we present an approach that introduces stochastic models for insurance products
through stochastic interest rate models. Similar to Black et al. [Black, Fisher, Derman, Emanuel, Toy, William, 1990. A one-factor model of
interest rates and its application to treasury bond options. Financ. Anal. J. 46 (January–February), 33–39], we assume that the premiums and
volatilities of standard insurance products are given exogenously. We then project insurance prices to extract underlying martingale probability
structures. Numerical examples on variable annuities are provided to illustrate the implementation of this method.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Most fixed and variable annuities include interest rate
guarantees that protect the policyholder against a poor
performance of the reference account. The reference account
for fixed annuities is the insurance company general account.
However, the premiums for variable annuities are invested
in the policyholder’s choice of underlying stock and/or bond
funds, which is called the subaccount.1 Variable annuity
financial guarantees are known as the guaranteed minimum
death benefit (GMDB), the guaranteed minimum accumulation
benefit (GMAB), the guaranteed minimum income benefit
(GMIB), and/or the guaranteed minimum surrender benefit
(GMSB). The last three benefits refer to guaranteed minimum
living benefits (GMLB). See the monograph by Hardy (2003)
for comprehensive discussions on these guarantees. According
to the 2006 Annuity Fact Book (see National Association for
Variable Annuities (2006)), the total sales in 2005 for fixed and
variable annuities have reached $212.3 billion in the US.

The traditional insurance and annuity pricing method
calculates the net premium of a product as the expected present
value of its benefits with respect to a mortality law. The (gross)
premium, net of commissions and other non-mortality-related
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1 We focus on subaccounts of variable annuities that are invested in the fixed
income market.

charges, is determined as the net premium plus a loading that is
based on a certain premium principle (see Bowers et al. (1997)).
Unfortunately, this traditional actuarial pricing approach often
produces premiums inconsistent with the insurance market.
Furthermore, it is difficult to extend to the valuation of
non-standard insurance products since these products are
embedded with various types of financial guarantees and are
more sensitive to interest rates. Many attempts have been
made to evaluate insurance products that are linked to the
financial market using option pricing and stochastic mortality.
However, most of the developments have been made in a fully
continuous-time setting under an independence assumption
between insurance and interest rates. Milevsky and Promislow
(2001) assume that the force of mortality has a mean reverting
Brownian Gompertz to evaluate mortality-contingent claims.
Dahl (2004), Biffis and Millossovich (2006), and Biffis (2005)
use affine mortality processes to evaluate insurance products
that are linked to the financial market. Cairns et al. (2006)
develop frameworks for the force of mortality based on interest
rate models. In the discrete-time framework, Lee (2000) applies
a stochastic adjustment to deterministic mortality probabilities.
Lin and Cox (2005) adjust the mortality probabilities using the
Wang Transform.

In this paper, we propose a market consistent valuation
method for insurance products that contain financial guarantees,
using the independence assumption as well as the conditional
independence assumption between the policyholder and the
interest rates. Similar to Jarrow and Turnbull (1995), we
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derive martingale probability measures associated with basic
insurance products and specifically the term life insurances and
pure endowment insurances. We assume that the premium2

information of term life insurances and pure endowment
insurances at all maturities is obtainable. Two martingale
measures, each of which serves a different purpose, are derived
using the premium information for each insurance product and
assumption. Consequently, these measures are age dependent,
include an adjustment for the mortality risk, and reproduce
premiums of the respective insurance products. Similar to
Black et al. (1990), we assume that the volatilities for standard
insurance products are given exogenously under the conditional
independence assumption. We then project insurance prices
to extract underlying martingale probability structures. For
implementation purposes additional structure is also proposed
to find implied volatilities. We implement these approaches by
evaluating the costs of interest rate guarantees embedded in
variable annuities, when their subaccounts are invested in fixed
income securities.

The assumption that the premium information of term
life insurances and pure endowment insurances is available
is what differs from many studies of the valuation of non-
standard insurance products. We argue that this assumption is
reasonable because an insurance company that issues insurance
products containing financial guarantees often issues standard
insurances. The premium information and fee structure of
these products are available within the company and hence it
may be possible, although might not be easy, for a valuation
actuary in the company to extract the aforementioned premium
information by stripping the costs of any add-on conversion
options and riders and by comparing the premiums of
insurances or annuities with different maturities. Furthermore,
due to the relative efficiency of the current insurance market
and the standardization of these basic products, their premium
are often dictated by the market and hence vary insignificantly
from company to company. As a result, the proposed method in
this paper will provide market consistent values for insurance
products with financial guarantees and will reduce subjectivity
when determining loadings.

This paper is organized as follows. The next section presents
binomial models for the financial market as well as for the
term life insurance and pure endowment insurance products.
We then derive martingale measures for those standard
insurance products in Section 3 under the independence
and conditional independence assumptions. It is followed by
numerical examples presenting the corresponding martingale
probabilities. Finally, we examine the implications of the
proposed approaches on guaranteed benefits embedded in
variable annuity by conducting a detailed numerical analysis.

2. Underlying binomial models

In this section, we first introduce the BDT binomial model
(Black et al. (1990)) for short-term rates. Among other

2 Hereafter, a premium is referred to as a single premium that includes
mortality charges but excludes commissions and other non-mortality-related
charges.

advantages, the BDT model is used by practitioners because
it matches the current term structure of interest rates and
the volatilities. A detailed analysis may be found in Panjer
et al. (1998) or Lin (2006). We then introduce two binomial
insurance models: one for term life insurances and one for pure
endowment insurances.

2.1. The Black, Derman and Toy model

In the BDT model, the short-term rate over a year either
goes up or down. In order to facilitate computation, the tree
is recombining and the short-term rate is Markovian. At year
t , the short-term rate can take exactly t + 1 distinct values
denoted by r(t, 0), r(t, 1), . . . , r(t, t). Indeed, r(t, l) represents
the short-term rate between time t and t + 1 that has made “l”
up moves. Specifically, the short-term rate today, r(0) is equal
to r(0, 0), and in the case where r(t) = r(t, l), the short-term
rate at time t + 1, r(t + 1) can only take two values, either
r(t + 1, l) (decrease) or r(t + 1, l + 1) (increase). We consider
the short-term rate process under the martingale measure Q
and hence, the discounted value process L(t, T )/B(t) is a
martingale. L(t, T ) represents the price at time t of a default-
free, zero-coupon bond paying one monetary unit at time T and
B(t), the money market account, represents one monetary unit
(B(0) = 1) accumulated at the short-term rate

B(t) =

t−1∏
i=0

[1 + r(i)] . (1)

Let q(t, l) be the probability under Q that the short-term rate
increases at time t + 1 given r(t) = r(t, l). That is

q(t, l) = Q[r(t + 1) = r(t + 1, l + 1)|r(t) = r(t, l)], (2)

for 0 ≤ l ≤ t , which is set to be 0.5 under the BDT model.
Consequently, the martingale probability that the short-term
rate decreases at time t + 1 given r(t) = r(t, l) is also 0.5.
Fig. 1 describes the dynamic of the short-term rate process.

We assume that the model matches an array of yield volatili-
ties (σr (1), σr (2), . . .), which is assumed to be observable from
the financial market. This vector is deterministic, specified at
time 0, and each element is defined by

σr (t)
2

= Var [ln r(t)|r(t − 1) = r(t − 1, l)]

=

[
0.5 ln

(
r(t, l + 1)

r(t, l)

)]2

, (3)

for l = 0, 1, . . . , t − 1 and t = 1, . . . . Hence, r(t, l + 1) is
larger than r(t, l) thus, (3) may be rewritten as follows

σr (t) = 0.5 ln
(

r(t, l + 1)

r(t, l)

)
. (4)

Eq. (4) holds for l ∈ {0, 1, . . . , t − 1} and leads to

r(t, l) = r(t, 0)1−l/tr(t, t)l/t , (5)

for l = 0, 1, . . . , t . Eqs. (4) and (5) lead to

σr (t) =
1
2t

ln
(

r(t, t)

r(t, 0)

)
. (6)
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