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Abstract

A generalized simple linear regression statistical/probabilistic model in which both input and output data can be fuzzy subsets
of Rp is dealt with. The regression model is based on a fuzzy-arithmetic approach and it considers the possibility of fuzzy-valued
random errors. Specifically, the least-squares estimation problem in terms of a versatile metric is addressed. The solutions are
established in terms of the moments of the involved random elements by employing the concept of support function of a fuzzy set.
Some considerations concerning the applicability of the model are made.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the situation in which the value assigned to each and every possible outcome in the performance of a
random experiment can be described by means of a fuzzy set. Fuzzy random variables (hereafter FRVs for short) in
Puri and Ralescu’s sense [31] were introduced as an extension of random sets to model this kind of situation, and they
can be employed in many contexts (see, for instance, examples in [3,15,11]).

A basic problem concerning random elements/variables is focussed on estimating the functional dependence of a
response variable on a set of explanatory variables, on the basis of their joint observation on n statistical units. In this
respect, descriptive and inferential regression and correlation analyses have been widely studied in the literature.

When dealing with FRVs, regression and correlation analyses become more complex due on one hand to the inter-
pretation of the relationships and, on the other hand, to the difficulties in finding optimal solutions and measures of
their adequacy.
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The regression problem with fuzzy data has been previously treated in the literature from different points of view
and by considering different kinds of input/output data. In this sense, Näther [29] and Coppi et al. [4] provide extensive
reviews of the main approaches to regression in a fuzzy setting and may serve as general references.

In the context of inferential regression analysis, two main problems come up, namely, the model specification and
the estimation of a given model. The first problem is focused on establishing the suitability of a given model for a
set of data, and it is traditionally addressed a posteriori, in order to take advantage of the estimators found for the
second one. Thus, as a first step, a new simple linear model for FRVs in Rp is formulated in this paper in terms of the
usual fuzzy arithmetic. This linear model has been analyzed in the particular case of convex compact sets in Rp by
González-Rodríguez et al. [16] as a broad alternative to that of Gil et al. [13]. As a consequence, this paper means a
generalization of the studies carried out by Gil et al. [12–14] and González-Rodríguez et al. [17,16]. The estimation of
the linear regression (i.e., the conditional expectation) is addressed. As in many previous works involving fuzzy data,
the least-squares technique is employed.

Themodel for FRVs considered in thiswork agreeswith those inDiamond [5,7], Diamond andKörner [9], Körner and
Näther [19], Näther [28], Wünsche and Näther [32] and Krätschmer [21], in the sense of involving the same regression
function under particular conditions. The objective in those works has been twofold. On one hand, the least-squares
solution of the fitting or approximation problem under particular conditions, or by considering a particular kind of
fuzzy numbers (such as the so-called LR fuzzy numbers), has been addressed (see, for instance [5,7,9,32]). On the
other hand, some theoretical properties of general estimators have been also established (see [19,28,21–23]).

The main contribution of the current paper w.r.t. the previous works in the literature is the obtaining of explicit
expressions for suitable estimators of the model under general conditions and for a wide class of fuzzy data generated
from the model. It should be noted that, in contrast to what happens in the real case, the numerical fitting problem and
the statistical estimation problem for the linear regression are different in the fuzzy case. The reason is that the lack of
linearity of the space of fuzzy datamakes that considering or not the data generation process lead to different restrictions
in the minimization problem. This paper concerns the estimation problem. To be precise, we consider a problem in
which two FRVsX , Y are related through a probabilistic model involving a linear function (namely, Y = aX + �, with
E(�) = B, see Section 3 for details), and the aim is to estimate the parameters of the model (namely, a and B) on the
basis of a random sample obtained from the observation of X and Y on n statistical units taking into account that the
data are generated from the model (namely, Yi = aXi + �i for all i = 1, . . . , n).

It is important to remark that the model considered in this paper (and all those in [5,7,9,19,22,23,29,32]) establishes
the relationship between X and Y through only two parameters a and B. However, fuzzy sets are complex data (not
points of an Euclidean space, but functions), and for this reason the applicability of the model is limited, since only
two parameters are frequently not enough to gather the expressiveness of the class of fuzzy sets. To overcome this
inconvenience particular models applicable for concrete families of fuzzy sets may be considered. For instance, if
we restrict to the class of LR fuzzy numbers, separated models for the center and the spreads can be analyzed. The
separated models can fit better many practical situations, because six parameters (or more if cross-combinations are
allowed) may be considered. The inconvenience of these models is that they imply non-negativity restrictions, which
are very difficult to handle in the inferential context (see, for instance [10,24]). Note that it is not possible to consider
separated models for general fuzzy sets in families not determined by a finite quantity of real numbers.

The paper is organized as follows: In Section 2 some notations and preliminary concepts concerning FRVs will be
presented. The considered simple linear model is stated in Section 3, and the least-squares estimators of the linear
regression are obtained in Section 4. In Section 5, a real-life example to illustrate the results is included. Finally,
in Section 6, some relevant conclusions and future directions related to the study developed in this paper will be
commented.

2. Preliminaries

Let Kc(Rp) be the class of the non-empty compact convex subsets of Rp and let Fc(Rp) denote the class of normal
and convex upper semicontinuous fuzzy sets of Rp with bounded closure of the support, that is,

Fc(R
p) = {U : Rp → [0, 1]|U� ∈ Kc(R

p) for all � ∈ [0, 1]},
where U� is the �-level set of U if � ∈ (0, 1], and U0 = cl({x ∈ Rp|U (x) > 0}. An example of fuzzy set on Fc(R)
we will consider is the so-called trapezoidal fuzzy number A = Tra(Ac, As, Al , Ar ) with the center Ac ∈ R and the
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