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a b s t r a c t

This paper is concerned with the numerical approximation of a mathematical model for life insurance
risk that has been presented quite recently by Young (2007, 2008). In particular, such a model, which
consists of a system of several non-linear partial differential equations, is solved using a new numerical
method that combines an operator splitting procedure with the differential quadrature (DQ) finite
difference scheme. This approach allows one to reduce the partial differential problems to systems of
linear equations of very small dimension, so that pricing portfolios of many life insurances becomes a
relatively easily task. Numerical experiments are presented showing that the method proposed is very
accurate and fast. In addition, the limit behavior of portfolios of life insurances as the number of contracts
tends to infinity is investigated. This analysis reveals that the prices of portfolios comprising more than
five thousand policies can be accurately approximated by solving a linear partial differential equation
derived in Young (2007, 2008).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We propose a numerical method for pricing portfolios of
life insurances based on a mathematical model that has been
presented quite recently by Young (2007, 2008). This model is
interesting for several reasons. First of all, the complex stochastic
evolution of the mortality rate is taken into account; second,
insurers are treated as rational agents, who minimize the risk of
their portfolios; finally, the mortality risk premium required by
insurance companies is suitablymodeled. Note that Young’smodel
is actually an extension to life insurance risk of a framework for
pricing pure endowments that has been previously developed by
Milevsky et al. (2005). Furthermore, models similar to Young’s
model have also been proposed for pricing portfolios of life
insurances and pure endowments (Bayraktar and Young, 2007),
and for pricing life annuities (Bayraktar et al., 2009).

In Young (2007, 2008) Young considers a portfolio of homo-
geneous life insurances (i.e., life insurances with same maturity
and same face value), and finds that the price of such a portfo-
lio satisfies a system of non-linear partial differential equations
of parabolic type. Precisely, we have as many partial differential
equations as is the number of policies considered. In addition, in
Young (2007, 2008) it is also proven that, as the number of policies
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considered tends to infinity, the average price of the life insurances
tends to a function that satisfies a linear partial differential equa-
tion of parabolic type. Neither the non-linear system of partial dif-
ferential equations nor the linear partial differential equation have
exact closed-form solutions, so they must be approached by nu-
merical techniques. Nevertheless, to the best of our knowledge, no
numerical methods to solve the system of non-linear partial differ-
ential equations have yet been proposed. Instead, in Young (2008),
a finite difference scheme is employed for approximating the linear
partial differential equation that holds in the limit as the number
of life insurances tends to infinity. Now, the solution of such a limit
equation can be used as an estimation of the true portfolio price if
the number of policies considered is sufficiently large. However, it
would also be interesting to solve the system of non-linear partial
differential equations that holds in the finite case, at least for two
reasons.

First of all, there are practical applications in which the number
of life insurances to be priced is not extremely large (say smaller
than some thousands). To figure this out, let us think, for instance,
to the case of an insurer who wants to sell a basket of new
contracts, for example to the employees of a firm; in addition, we
shall also consider that Young’s model is to be applied not to all
the policies traded by an insurer, but only to policies that can be
reasonably assumed to be homogeneous (for maturity and face
value).

Second, solving the non-linear system of partial differential
equations is useful to investigate how well the average life
insurance price is approximated by the solution of the linear partial
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differential equation. In this respect it should be observed that in
Young (2007, 2008) Young does not give any quantitative measure
of the distance between the solution of the linear limit equation
and the solution of the system of non-linear partial differential
equations.

In the present paper, the system of non-linear partial differ-
ential equations arising in Young’s model is solved using a new
method based on the harmonic differential quadrature (HDQ) fi-
nite difference scheme. The HDQ approach, originally introduced
by Striz et al. (1995), and further developed and analyzed by Chen
et al. (1996) and Shu and Xue (1997), has been applied to various
problems in science and engineering (see, for example, Janghor-
ban (2011), Malekzadeh and Karami (2005), Shu (2000), Shu and
Richard (1992) and Striz et al. (1997)). Its main advantage is that
very accurate approximations are achieved using a computational
mesh with a very small number of nodes.

In the present manuscript, the HDQ method is employed
in conjunction with a suitable operator splitting technique,
which allows us to decouple the non-linear partial differential
problem characteristic of Young’s model into independent smaller
problems. By combining the HDQ method with such operator
splitting procedure, we obtain systems of linear (algebraic)
equations of very small dimension, so that portfolio prices can
be calculated in reasonable times also when the number of life
insurances is relatively large (say equal to some thousands).

Numerical experiments are presented showing that themethod
proposed is significantly accurate and fast. In fact, for example,
portfolios of five thousand policies can be priced with an error of
order 10−3 in a time equal to 69.2 s (on a computer with a Pentium
P6000 1.87 GHz 4 GB RAM).

Furthermore, in this paper the convergence behavior of the
portfolio price as the number of policies increases is investigated.
In particular, it is shown that when there are five thousand life
insurances the difference between the solution of the linear partial
differential equation and the true average life insurance price
starts to become of order 10−3. Thus, the prices of portfolios
that comprise at least five thousand policies can be accurately
approximated by solving the linear partial differential equation,
in place of the system of (many) non-linear partial differential
equations.

Finally, we point out that the numericalmethod proposed in the
presentmanuscript could also be applied to several othermodels in
actuarial mathematics, which, from the analytical standpoint, are
substantially analogous to Young’s model. Some of these models
are briefly described in Appendix.

The remainder of the paper is organized as follows: in Section 2
the basic facts about Young’s model are briefly recalled; in
Section 3 the HDQ-operator splitting finite difference approach
is developed; in Section 4 the numerical results obtained are
presented and discussed; in Section 5 some conclusions are drawn.

2. The mathematical model

According to Young’s model (Young, 2007, 2008), the mortality
rate λ, which measures the probability of an individual dying
in an infinitesimal time, is described by the following stochastic
differential equation:

dλ = µ(λ, t)(λ − λ)dt + σ(t)(λ − λ)dW λ, (1)

where µ and σ are suitable functions of their arguments (they will
be specified later), λ is a positive constant parameter, and W λ is a
Wiener standard process.

Furthermore, in Young (2008) the interest rate r is modeled
according to the following stochastic differential equation:

dr = b(r, t)dt + d(r, t)dW r , (2)

where b and d are suitable functions of their arguments (they
will be specified later), and W r is a Wiener standard process
uncorrelated withW λ. Note that in Young (2007, 2008) the vector
variable (r, λ) is assumed to vary in the following set:

Ω = [0, +∞) × [λ, +∞). (3)

Let Ω denote the interior set of Ω , that is Ω = (0, +∞) ×

(λ, +∞). Moreover, let A(N)(r, λ, t) denote the price of a portfolio
of N homogeneous life insurances with face value 1 and maturity
T . As shown in Young (2007, 2008), the function A(N) must satisfy
the following system of non-linear partial differential equations:
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(r, λ) ∈ Ω, t < T , n = 1, 2, . . . ,N, (4)

where α is the so-called Sharpe ratio, which can be thought of as a
mortality risk premium (see Young (2008)).
The system of partial differential equations (4) must be solved
recursively for n = 1, 2, . . . ,N , and the function A(0) needed to
obtain A(1) is given by

A(0)(r, λ, t) = 0, (r, λ) ∈ Ω, t ≤ T . (5)

The differential equations (4) must be equipped with final
condition:

A(n)(r, λ, T ) = 0, (r, λ) ∈ Ω, n = 1, 2, . . . ,N. (6)

Let p(N) denote the average price of the N life insurances:

p(N)
=

A(N)

N
. (7)

In Young (2007, 2008) it is also shown that as N tends to infinity
p(N) tends to a function p that satisfies the following linear partial
differential equation:
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with the final condition:

p(r, λ, T ) = 0, (r, λ) ∈ Ω. (9)

In Young (2007, 2008) the problem of which boundary
conditions to apply to (4)–(6) and to (8)–(9) is not addressed.
Therefore, given that, for economic reasons, the function A(n) is
monotone in the λ and the r variables (see also Fig. 1), and is
bounded from below and above (being positive and smaller than
the total face value of n life insurances), we prescribe:
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