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a b s t r a c t

Models for estimation of cetane number of biodiesel from their fatty acid methyl ester composition using
multiple linear regression and artificial neural networks were obtained in this work. For the obtaining of
models to predict the cetane number, an experimental data from literature reports that covers 48 and 15
biodiesels in the modeling-training step and validation step respectively were taken. Twenty-four neural
networks using two topologies and different algorithms for the second training step were evaluated. The
model obtained using multiple regression was compared with two other models from literature and it
was able to predict cetane number with 89% of accuracy, observing one outlier. A model to predict cetane
number using artificial neural network was obtained with better accuracy than 92% except one outlier.
The best neural network to predict the cetane number was a backpropagation network (11:5:1) using
the Levenberg–Marquardt algorithm for the second step of the networks training and showing
R = 0.9544 for the validation data.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Several physical properties of biodiesel fuels depend on their
fatty acid ester composition [1–3]. Also related to the ester compo-
sition is the cetane number which is one of the most cited indica-
tors of diesel fuel quality [3–6]. The cetane number measures the
readiness of the fuel to autoignite when it is injected into the com-
bustion chamber. It is generally dependent on the composition of
the fuel and can influence the engine stability, noise level, and ex-
haust emissions.

The cetane number (CN), determined by a standard (diesel en-
gine) test ASTM D613, is a measure of the ignition quality of a die-
sel fuel in a compression ignition engine. A fuel with higher cetane
number has a shorter ignition delay period and starts the combus-
tion shortly after it is injected into the chamber [4]. While the igni-
tion delay can be influenced by engine type and operation
conditions, the cetane number mainly depends on the chemical
composition of the fuel.

The cetane number of biodiesel is generally higher than the
standard diesel fuel. Experimental data shows values varying be-
tween 45 and 67 for biodiesel and ranged between 40 and 49 for
diesel fuel [7,8]. A single fatty acid alkyl ester molecule can have

a cetane number between 42 and 89, depending on its molecular
structure [7].

Van Gerpen [7] studied the effect of adding pure esters to diesel
fuel. A linear regression fit on the CN data for each ester as a func-
tion of the percent of ester in the blend was used. The obtained val-
ues of the coefficient of correlation were ranged between 0.4889
and 0.9965 depending on the fatty acid added to the blend.

Equations for predicting the cetane number of diesel or biodie-
sel fuels have been published [4,9–15], correlating this parameter
with different input experimental factors or using different math-
ematical methods. Yang et al. [9] developed multiple linear corre-
lation equations for predicting the CN for 12 hydrocarbons in order
to compare with a model developed using artificial neural net-
works (ANNs).

A model for the estimation of the cetane number of biodiesel
fuels based on a literature review was proposed by Lapuerta
et al. [13,14]. The model was built up from experimental data ob-
tained using different methods, initially divided in those from a
diesel engine called Cooperative Fuel Research engine (CFR) and
those from an Ignition Quality Tester (IQT) device, and finally
brought together. A quadratic correlation with the number of car-
bon atoms in the original fatty acid and the number of double
bonds was statistically selected as the most suitable. The R2 ob-
tained were ranged between 0.918 and 0.947.

Bamgboye et al. [15] applied multiple linear regression for
obtaining a model for predicting cetane number were the R2
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obtained was 0.883 and he validated the model using data from lit-
erature. Ramos et al. [16] reports the use of a previously published
equation to predict cetane number from the cetane number of the
individual fatty acid methyl esters (FAMEs). Its use cannot avoid
the engine tests or collecting cetane numbers of pure FAMEs from
literature reports.

Most of the models published for cetane number prediction
were developed with Multiple Linear Regression (MLR) techniques.
That procedure requires the user to specify a priori a mathematical
model to fit the data in order to obtain the empirical correlation.
An alternative to avoid that problem is the use of artificial neural
networks.

Unlike the correlation techniques, the neural network can iden-
tify and learn the correlative patterns between the input and out-
put data once a training set is provided. The use of ANNs for
predicting and modeling of energetic and mechanical systems is
reported [17–24]. Their use in the modeling of engines combustion
processes is also reported [25–28]. Very few reported the use of
ANNs for obtaining models to predict the cetane number of diesel
fuels [9,29,30], and only one for its prediction in biodiesel fuels
[12].

Yang et al. [9] used a backpropagation neural network model
with a training step and a validation step. The results shown a
higher coefficient of determination (R2 = 0.97) than using MLR.
Basu et al. [29] obtained relationships between the CN of diesel
fuels using nuclear magnetic resonance. The cetane number was
determined using an IQT. Ramadhas et al. [12] used an ANN to pre-
dict cetane number selecting four types of networks. Santana et al.
[30] estimated the CN of individual components of diesel fuel using
ANNs. The neural networks have also been applied to the predic-
tion of other fuel properties [31].

Determination of the CN by an experimental procedure at pres-
ent is an expensive and time consuming process. Therefore, the
obtaining of accurate models to predict the CN of a biodiesel from
its FAME composition in a wide range of feedstocks characteristics
would be useful for the scientific community.

The purpose of this work is to obtain models for the estimation
of the cetane number of biodiesel from their FAME composition
using MLR and ANNs searching for the best suitable model to pre-
dict cetane number in the range of biofuels studied, covering bio-
diesels from 63 feedstocks.

2. Experimental set-up and procedures

In the present work 48 different biodiesel fuels (including 10
pure fatty acids) were taken from references as input and output
data for the obtaining of a MLR and for the implementation of ANNs

for predicting the cetane number. The FAME main composition pre-
sented in biodiesel obtained from different feedstocks is covered by
ten FAMEs selected [10,12,15,16,32–36]. The input data covers
FAME composition and the output covers the cetane number. The
validation of the models obtained was done using a separate data
set selected from literature reports, which was not used for develop-
ing the models. The data selected for validation covers 15 samples.

The degree of relationship between measured and fitted cetane
number data was expressed as the R and R2. The best fit was ex-
pressed as the higher R and the lower mean absolute error. The ob-
tained model using MLR was compared with two models available
in literature [10,15]. Due to the type of data inputs collected for
this work, the comparison with correlations as those proposed by
Lapuerta et al. [14] and Tong [33] was discarded.

With the aim of comparing the models obtained using MLR and
ANNs, different networks were developed using two basic topolo-
gies (11:5:1) and (11:7:1). As an example, one of the topologies
used in this work is shown in Fig. 1. The ANNs used were the mul-
tilayer Perceptrons, with one hidden layer and five or seven units.
The inputs of the network were ten, representing the chemical
composition of 10 FAME and one input representing the total
amount of the other FAMEs found in the biodiesel sample. The
CN was the unique variable output of the network.

The chemical formula and the structure of the FAMEs on which
this research is focused are shown in Table 1. The ten FAMEs listed
represent the inputs for the CN modeling. The basic structural

Nomenclature

CN cetane number
ASTM American standard
ANNs artificial neural networks
CFR Cooperative Fuel Research engine
IQT Ignition Quality Tester
R2 coefficient of determination
FAMEs fatty acid methyl esters
MLR multiple linear regression
BP backpropagation
CGD conjugate gradient descend
QP quick propagation
BD biodiesel
La percent of lauric

M percent of myristic
P percent of palmitic
Pt percent of palmitoleic
S percent of stearic
O percent of oleic
Li percent of linoleic
Ln percent of linolenic
Ei percent of eicosanoic
Er percent of erucic
Ot sum of residual FAMEs to reach 100%
wt weight percent
R coefficient of correlation

Fig. 1. Network (11:5:1) for the prediction of the cetane number.
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