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a  b  s  t  r  a  c  t

Existence  of outlier  data  among  the observation  data  leads  to inaccurate  results  in  modeling.  Detection
to omit  or  lessen  the  impact  of  such  data  has  a significant  effect  to make  corrections  in  a  model.  Either
elimination  or  reduction  of the outlier  data  influence  is two ways  to prevent  their  negative  effect  on
the  modeling.  Both  approaches  of elimination  and  impact  reduction  are  taken  into  account  in dealing
with  the  mentioned  problem  in  fuzzy  regression,  where  both  the  input  and output  data  are  non-fuzzy.
The  main  idea  is  considered  based  on  linguistic  variables  and  possibility  concept  as  well  as ordinary
regression  to deal  with  the  outlier  data.  Several  examples  as  well  as  a  case  study  are  put  into  effect  to
show the  capability  of  proposed  approach.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Statistical regression is a common way to find a crisp relation-
ship between dependent variable (y) and independent variables (x).
An ordinary regression analysis is indeed an explanation for the
variation of the former in terms of the latter in which probability
distribution is used to find its parameters. However, the possibil-
ity theory [2] is applied to extract a fuzzy relationship between the
input and output data, when fuzzy regression is considered. This
relationship can lead to an inaccurate model with the existence of
outlier data. Detection and omission of outlier data is an important
process that may  prevent from obtaining untrustworthy models.

Fuzzy Linear Regression (FLR) analysis is introduced by Tanaka
et al. [1],  who established his idea on the basis of the possibility the-
ory while until yet. However, many revisions have been proposed
on fuzzy regression models. Linear programming method [3–6],
and the least-squares model [7–11] are the two classes of solutions
that are currently known for fuzzy regression models. Nonetheless,
Tanaka’s approach is used yet because of its simplicity; but it has
some problems that can be classified into two categories:

1. Influence of difference trend problems.
2. Outlier data problem.

Chang and Lee [12,13] considered the first set of problems. They
demonstrated that fuzziness and uncertainty in the structure of a
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system are two essential factors that deeply affected on the trend
of the centers and spreads. Investigation on outliers was  carried
out by Peters [14] to control bad influence of the training data
on the estimated interval. For this purpose, he applied fuzzy lin-
ear programming with triangular membership the width of which
depends on some adjusting parameters such as “goodness” of the
solution, the tolerance interval, and the desired value of the objec-
tive function.

Chen [15] illustrated that Peter’s model may result in error, par-
ticularly when data contain outliers. Indeed, his finding revealed
that PFLR (Possibilistic Fuzzy Linear Regression) or UFLR (Unrestric-
ted sign Fuzzy Linear Regression) model is led to wrong outcomes
whenever the estimated confidence interval is too broad. He put
an additional restriction (k-value, which is stated as a difference
in the width between the spread of the estimated data and the
spread of the dependent observation data) to keep influence of out-
liers away. Nonetheless his model was  very sensitive to the value
of k. Other investigators, comprising Ortiz et al. [16] indicated that
robust regression may  be an alternative tool for detection of outlier
data. Tanaka and Lee [17] used linear programming with quadratic
programming to handle outlier data based on combination of cen-
tral tendency and possibility properties.

Because Chang and Lee [12,13], Ortiz et al. [16] and Chen
[15] models consider fuzzy observation while the proposed model
regards crisp data, thus we consider the results of Tanaka et al. [1]
model and Peters [14] model.

This paper deals with outlier data problems for non-fuzzy input
and non-fuzzy output models by applying linguistic variables. Out-
lier data are determined by applying ordinary regression along with
possibility concept to omit or lessen their effects.
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The organization of the remaining parts of the paper is as
follows. In Section 2, preliminary definition of fuzzy numbers is
considered. Proposed method will be introduced in Section 3.
Numeric examples as well as a case study will be applied in order
to demonstrate the ability of proposed approach in the Section 4.
Conclusion of the paper will be pointed out in the last section.

2. Fuzzy numbers and fuzzy regression

Based on Dubois and Prade [18], Ã is defined as a fuzzy number
which satisfies the following criteria:

First: normality, ∃x ∈ R such that �Ã(x) = 1
Second: convexity, ∀x1, x2 ∈ R, ∀h ∈ [0;1]

�Ã(hx1 + (1 − h)x2) ≥ min(�Ã(x1), �Ã(x2))

Ã = (cL, a, cR)LR is a LR-type fuzzy number where a, cL and cR

are the center, left spread and right spread of the fuzzy number,
respectively (cL and cR > 0). When cL = cR = c, we have a symmetric
triangular fuzzy number. Thus, Ã = (a, c)L is a symmetric triangular
fuzzy number if:

�Ã(x) = L
(

a − x

c

)
= 1 − |a − x|

c
, a − c ≤ x ≤ a + c (1)

In this paper symmetric triangular fuzzy numbers is only con-
sidered for simplicity.

Fuzzy Linear Regression (FLR) model was introduced initially by
Tanaka et al. [1] as:

Ỹ∗
i = Ã0Xi0 + Ã1Xi1 + · · · + Ãp−1Xi,p−1 = ÃXt

i (2)

where Ỹ∗
i

; i = 1, . . .,  n, are the estimated fuzzy data, Ãj = (aj, cj)L;
j = 0,1, . . .,  p − 1 are the set of symmetric fuzzy coefficients, and
Xi = [Xi0, Xi1,. . .,  Xi,p−1] are vectors of the independent variables. The
extension principle [2] which plays a basic role in the fuzzy set
theory, provides a foundation for all manipulations on fuzzy sets.
By applying the extension principal, membership functions of Ỹ∗

i
in

the fuzzy linear regression model (2) can be obtained as:

�Ỹ∗
i
(y∗) = max

y∗=f (Xi,Ã)
min

j
(�Ãj

(aj)) (3)

3. The new approach

Outlier data are a subset of data that have great difference with
the majority of data. We  name the non-outlier data by reliable data.
Emerged problems by such difference can be resolved by detection
of outlier data and disregarding them by either omission or reduc-
tion of their effects. Indeed, we delete a data that is far enough from
the majority of data, where the concept of “far” may  create various
senses in the mind. One may  feel that a certain point should be
included in outlier data, while others do not. Such different judg-
ments motivate us to think of a fuzzy concept as a measure for
membership in the reliable subset of the data set. To do so, a linguis-
tic variable is used to describe the data position and then identify
outlier data. We  take the concept of “far” as a fuzzy value with
different degrees, consequently, any data point that falls outside a
bound defined by an interval of [fmin, fmax] is considered to be an
outlier data. Then we define the fuzzy set of “far” with its member-
ship function illustrated in Fig. 1. By this definition we  consider a
reliable data point to be farther and thus less reliable than another
one when it spots nearer to either fmin or fmax. On the other hand,
it discovers as an outlier data when to be far from fp, which will
define in follow. All members of the data set with a fp bigger than
fmax or less than fmin is supposed as an outlier data where �p(f) = 0.
Interval [fmin, fmax] is taken into account by coefficient �i(fTr) which
index Tr makes a brief of Triangular.

Fig. 1. Fuzzy membership function for far, f.

To find suitable fp, here, ordinary regression as well as R-square
criterion, R2, which is introduced as a goodness of fitting method, is
used. This statistic measures how successful the fit is in explaining
the variation of the data. R-square is defined as the ratio of the sum
of squares of the regression (SSR) and the total sum of squares (SST).
Where SSR and SST are defined as follows:

SSR =
∑

(Ŷ − ȳ)
2

SST =
∑

(yi − ȳ)2

where Ŷ and ȳ are respectively the estimated data and the mean of
the dependent data. After fitting an appropriate curve to the data,
possibility concept will be defined to determine whether data posi-
tion is outlier or not. Indeed, appropriate curve will be identified
by a simple rule of thumb about R2. If its amount gets greater than
or equal to 0.8, it will be assessed as a proper curve. We  will use
the possibility concept provided that the amount of R-square to be
identified greater than or equal 0.8, else the ordinary regression
curve will be fitted to each set of data by deleting one observa-
tion in each step and saving the corresponding R-square amount.
At the end, there is an array of R-square data, which their maxi-
mum  will be deleted. In other words, we  believe that by canceling
an outlier data, the R-square amount will improve. Then, an ordi-
nary regression is applied to new data set. The process will over if
the amount of R2 confirms the mentioned rule, otherwise, it will
repeat until to reach a desired R-square. The quantity of fi will be
achieved by substituting its corresponding xi amount in the final
ordinary regression equation (fi = Ŷ(xi)).

By fitting suitable curve to the data, we  simply define below the
possibility of being reliable for each data by a triangular member-
ship, �i(f). It is used to displace dependent data and create a new
data set, namely y∗

i
.

If yi ≤ fmin or yi = fmax then delete yi (4)

If yi ⊆ [fmin, fi] then y∗
i = fi − S� (5)

If yi ⊆ [fi, fmax] then y∗
i = fi + S� (6)

where S�, fmin and fmax are calculated as follows:

S� =
∣∣yi − Ŷ(xi)

∣∣ (1 − �i(y))

2
(7)

fmax = fi +  ̌ ×
√

Var(y) (8)

fmin = fi −  ̌ ×
√

Var(y) (9)

Var(.) stands for variance and  ̌ is a parameter the amount of
which is supposed to equate (3).  Therefore, by substituting the
new data, y*

i, instead of the original one, yi, the proposed fuzzy
regression model below is achieved.
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