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a b s t r a c t

Recently, finitemixturemodels have been used tomodel the distribution of the error terms
inmultivariate linear regression analysis. In particular, Gaussianmixturemodels have been
employed. A novel approach that assumes that the error terms follow a finite mixture of t
distributions is introduced. This assumption allows for an extension of multivariate linear
regression models, making these models more versatile and robust against the presence
of outliers in the error term distribution. The issues of model identifiability and maximum
likelihood estimation are addressed. In particular, identifiability conditions are provided
and an Expectation–Maximisation algorithm for estimating the model parameters is
developed. Properties of the estimators of the regression coefficients are evaluated through
Monte Carlo experiments and compared to the estimators from the Gaussian mixture
models. Results from the analysis of two real datasets are presented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Linear regression analysis (see, e.g., Srivastava, 2002) is a technique that allows for the study of the dependence of D
responses Y = (Y1, . . . , Yd, . . . , YD)

′ on P regressors (X1, . . . , Xp, . . . , XP)
′, where D ≥ 1 and P ≥ 1. Linear regression is

based on the following statistical model:

Yi = β0 + B′xi + ϵi, (1)

where the symbol i is used to denote a sample unit; Yi = (Yi1, . . . , Yid, . . . , YiD)
′ and xi = (xi1, . . . , xip, . . . , xiP)′ are the

D-dimensional vector of the response variables and the P-dimensional vector of the fixed regressor values for the ith unit,
respectively; β0 is a D-dimensional vector containing the intercepts for the D responses; B is a matrix of dimension P × D
whose (p, d)th element, βpd, is the regression coefficient of the pth regressor on the dth response; finally, ϵi denotes the
D-dimensional random vector of the error terms corresponding to the ith unit. In the classical linear regression model, it
is additionally assumed that ϵi, i = 1, . . . , I , are independent and identically distributed random vectors with a Gaussian
distribution with a D-dimensional zero mean vector and a positive definite covariance matrix 6 of dimension D × D:

ϵi ∼ ND(0, 6). (2)

Many extensions of this classic model have been proposed to broaden the applicability of linear regression analysis to
situations where the Gaussian error term assumption may be inadequate, for example, because of outlying values in
the responses or datasets involving errors with longer than normal tails. Some such extensions rely on the use of the t
distribution (see, e.g., Lange et al., 1989; Sutradhar and Ali, 1986; Zellner, 1976). In particular, a linear regression analysis
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has been developed by replacing (2) with the assumption

ϵi ∼ tD(0, 6, ν), (3)

where tD(µ, 6, ν) denotes the D-dimensional t distribution with location parameter µ ∈ RD, dispersion matrix 6 ∈ R6D

and degrees of freedom ν ∈ R+, where R6D is the set of all positive definite matrices in RD×D.
However, in practice, when nothing is known about the true distribution of the error terms, a linear regression analysis

based on any of the above models may be performed using an incorrectly specified model. Furthermore, there may be
situations where a single parametric family is unable to provide a satisfactory model for local variations in the observed
data. To overcome these problems, solutions that use finitemixturemodels have been recently proposed. Namely, Bartolucci
and Scaccia (2005) and Soffritti and Galimberti (2011) have developedmethods for linear regression analysis by assuming a
finite mixture of Gaussian components for the error terms. More specifically, in the linear regression model obtained using
this approach, the assumption (2) is replaced with

ϵi ∼

K
k=1

πkND(δk, 6k), (4)

where πk’s are positive weights that sum to 1, the δk’s are D-dimensional mean vectors that satisfy the constraintK
k=1 πkδk = 0 and the 6k’s are positive definite covariance matrices.
In this paper, we extend this approach by assuming that the distribution of each component belongs to the class of t

distributions. The rationale of such an approach is that quite complex distributions can bemodelled through a finitemixture
model, and thus, a more flexible modelling of the unknown error distribution of a linear regression model can be obtained.
In addition, using a finite mixture model makes it possible to capture the effect of omitting relevant nominal regressors
from the model. In this case, the source of unobserved heterogeneity introduced in the model will affect the error terms,
whose distribution will be a mixture of K components, where K equals the number of categories obtained from the cross
classification of the omitted nominal regressors. Thus, an approach based on the finite mixture model should detect the
presence of such unobserved heterogeneity in the linear regression model. The model obtained under this new assumption
may be particularly suitable whenever the tails of the distribution of the error terms in each component of the mixture
model are heavier than those of the Gaussian distribution (Peel and McLachlan, 2000); furthermore, this model protects
against the presence of outlying residuals.

The remainder of the paper is organised as follows. Section 2 provides the details of this novel class of models. In
Section 2.1, we describe the multivariate linear regression model in which the error term distribution is a finite mixture
of t distributions; model identifiability and maximum likelihood (ML) estimation using an Expectation–Maximisation (EM)
algorithm are addressed in Section 2.2 (proofs of some results are provided in Appendices A and B). In Section 3, we present
the results of Monte Carlo experiments, which provide numerical evaluations of the main properties of the estimators of
the model regression coefficients. In Section 4, we report results obtained by applying the proposedmethodology and other
existing methods to two real datasets. Properties concerning the t distribution that are used in this paper are summarised
in Appendix C.

2. Linear regression through finite mixtures of t distributions

2.1. The general model

We assume that the distribution of the error terms in the model (1) is the following mixture of K multivariate t
distributions:

ϵi ∼

K
k=1

πktD(δk, 6k, νk), (5)

where πk’s are positive weights that sum to 1, the δk’s are D-dimensional mean vectors that satisfy the constraintK
k=1 πkδk = 0, the 6k’s are positive definite dispersion matrices and the νk’s are the degrees of freedom of the K mixture

components, with νk ∈ R+
∀k. In the special case where K = 1, this model results in the linear regression model based on

the assumption (3) proposed by Lange et al. (1989). The limiting form of the probability distribution in Eq. (5) as νk → ∞ ∀k
coincides with the forms considered in Eqs. (2) and (4) when K = 1 and K ≥ 1, respectively.

Given Eqs. (1) and (5), the probability density function (p.d.f.) of the D-dimensional random vector Yi is

K
k=1

πkf (yi; µik, 6k, νk), µik = λk + B′xi, yi ∈ RD, (6)

where λk = δk + β0 and f (yi; µik, 6k, νk) is the p.d.f. of the distribution tD(µik, 6k, νk) evaluated at yi (see Eq. (C.1) in
Appendix C). The vector of the model parameters is θ = (π′, b′, λ′, σ ′, ν′)′, where π = (π1, . . . , πK−1)

′, b = vec(B)
denotes the vector formed by stacking the columns of the matrix B, one underneath the other, λ = (λ′

1, . . . ,λ
′

K )′, σ =
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