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This paper presents a new data classification method based on particle swarm optimization (PSO)
techniques. The paper discusses the building of a classifier model based on multiple regression linear
approach. The coefficients of multiple regression linear models (MRLMs) are estimated using least square
estimation technique and PSO techniques for percentage of correct classification performance
comparisons. The mathematical models are developed for many real world datasets collected from
UCI machine repository. The mathematical models give the user an insight into how the attributes are
interrelated to predict the class membership. The proposed approach is illustrated on many real data sets
for classification purposes. The comparison results on the illustrative examples show that the PSO based

approach is superior to traditional least square approach in classifying multi-class data sets.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Data classification plays a major role in any pattern recognition
problem. It is a supervised learning strategy which emphasizes on
building models able to assign new instances to one of a set of well-
defined classes. There has been wide range of machine learning and
statistical methods for solving classification problems. Many
algorithms have been developed including classical methods such
as linear discriminant analysis and Bayesian classifiers, statistical
techniques such as MARS (multivariate adaptive regression splines),
machine learning approaches for decision trees, etc. including C4.5,
CART, C5, bayes trees and neural network approaches such as
multiplier perceptron and neural trees [1-8]. Approaches like fuzzy
logic, support vector machine (SVM), tolerant rough sets, principal
component analysis (PCA), linear programming also have been very
popular for data classification problems [9].

Some of the classification techniques mentioned above work well
when the classes are linearly separable. However, in many real world
problems the data may not be linearly separable and also data are
very closely spaced and therefore a highly nonlinear decision
boundary is required to separate the data. Techniques like neural
network (NN), SVM, Fuzzy logic are very useful approaches for such
cases. However, in many cases it is desired to find a simple classifier
which gives the user a rough, but understandable insight into how
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the data attributes relates to class memberships. This objective can
be achieved if it is possible to learn relationship hidden in data and
express them in mathematical manner. There have been some
attempts to solve classification problems using mathematical
programming of linear discriminant analysis [10]. Very recently
genetic programming (GP) [11] has been used for developing a
mathematical model automatically for classifying multi-class
problems [12-15]. GP is an effective approach in discovering the
underlying relationship among data and express the relationship
among attributes in an understandable manner for classification
problem. But the resultant mathematical models obtained using
[13,15] require many arithmetic operations while predicting the
class for data sets having many features and many classes.

The objective of this paper is to present an -effective
mathematical model based on linear regression for multi-class
data classification problem. We discuss our approach in developing
multiple regression linear models (MRLMs) for different real data
sets. The coefficients associated with the MRLM are estimated
separately by least square estimation (LSE) [16,17] method and the
classification accuracies are determined for all datasets separately.
An evolutionary approach called particle swarm optimization
(PSO) [19] is then used to estimate the coefficients of MRLM for
each dataset and the classification accuracies are computed. The
comparisons are made for above two approaches. It is shown that
PSO approach outperforms the LSE approach in terms of giving
better classification accuracy. Finally mathematical models are
presented as illustrations for few datasets to show the inter-
relationship existing among attributes of respective datasets.
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The rest of the paper is organized as follows. In Section 2 the
MRLM is briefly discussed with LSE technique. Section 3 describes
the basics of PSO. Data set description and simulation results are
given in Section 4. Section 5 gives conclusion and some direction
for future research.

2. Multiple regression linear model and least square estimator

Multiple regressions are an extension of linear regression
involving more that one predictable variable. The model based on
multiple regressions is here known as multiple regression linear
model (MRLM). MRLM attempts to model the relationship
between two or more explanatory variables and a response
variable by fitting linear equation to observed data. Every value of
the independent variable x is associated with a value of the
dependent variable y. The population regression line for p
explanatory variables x1,X5,.. ..X, is defined to be

Y=co+CiXg+ X+ -+ +CpXp (1)

In our study x;,X,. . .,X, represent the parameters or attributes of
the data sets under investigation and the response Y is the class
value for a particular instance in the data set.

The method of LSE can be applied here to solve for cy,c1,C2,. . .,Cp.
In this method the best-fitting line for the observed data is
calculated by minimizing the sum of squares of the vertical
variations from each data point to the line. The LSE technique is
explained in [16,17]. The brief description is given below.

Let the input and output data for training be represented in the
following manner

X11  X12 Xim Y1
X21 X2 Xom Y2
Xn1 Xn2 Xnm yn

In general, it is expressed as
Xi, i) = 11, X215 - -« Xmis Vi)
where n: number of records; m: number of features.
The input and output relationship of the above data can be

expressed in multiple regression linear model in the following
manner as per (1).

Y1 =0Co+ C1X11 +CaX12 + -+ + CmX1m
Yo = Co + C1X21 + C2X22 + -+ + CmXom 2)
Yn =Co+ C1Xn1 + C2Xp2 + -+ + CmXnm

The principle of least square minimizes the residual error
between the estimated value and the desired value by choosing
suitable values for co-efficient such as cg,c1,C3. . .Cn. The residual
error can be expressed as follows
di = y; — (Co + C1Xi1 + CaXiz + -+ + CmXim) (3)

The equations for the least square are

n
[[=di+d5+ - +dy=> d?
i=1

n
="lyi — (Co + C1Xit + CaXiz + ++ + ConXim)] (4)
i=1

3. Particle swarm optimization

The particle swarm algorithm [19] is an optimization technique
inspired by the metaphor of social interaction observed among
insects or animals. The kind of social interaction modelled within a
PSO is used to guide a population of individuals (so called particles)

moving towards the most promising area of the search space. In a
PSO algorithm, each particle is a candidate solution equivalent to a
point in a d-dimensional space, so the i-th particle can be represented
as X; = (Xj1,Xi2,. - -Xiq)- Each particle “flies” through the search space,
depending on two important factors, P; = (pi1,Pi2.- - -,Pia), the best
position the current particle has found so far refereed as pbest; and
Pg = (Pg1.Pg2.- - -Pga), the global best position identified from the entire
population (or within a neighbourhood) refereed as gbest.

The rate of position change of the i-th particle is given by its
velocity V; = (vi1,Via,. . ,Vig). Eq. (5) updates the velocity for each
particle in the next iteration step, whereas Eq. (6) updates each
particle’s position in the search space [11]:

Vig(t) = Wvig(t — 1) + ¢1(Pig — Xig(t — 1)) + C2(Pgg — Xig(t — 1))  (5)

Xig(t) = Xjg(t — 1) +vig(t) (6)

where w is inertia weight, c; and c, are acceleration coefficients.
Two common approaches of choosing p, are known as gbest and
Ibest methods. In the gbest approach, the position of each particle in
the search space is influenced by the best-fit particle in the entire
population; whereas the Ibest approach only allows each particle to
be influenced by a fitter particle chosen from its neighbourhood.
Kennedy and Mendes et al studied PSOs with various population
topologies [20], and have shown that certain population structures
could give superior performance over certain optimization functions.
There is no hard and fast rule as to how many particles should
be used to solve a specific problem. A large number of particles
allow the algorithm to explore the search space faster; however,
the fitness function needs to be evaluated for each particle, so the
number of particles will have a huge impact on the speed at which
the simulation will run. Generally speaking, as the complexity of
the search space increases, so should the number of particles.
The inertia weight, w, in the velocity vector update Eq. (5), is a
scaling variable that controls the influence of the previous velocity
when calculating the new velocity. Inertia weight values larger
than one will typically cause the particle to accelerate and explore
larger regions of the search space, while smaller values will cause
the particle to gradually slow down and do a finer search of a
region [18]. Many algorithms tend to decrease the inertia weight
over time, allowing particles to initially roam a larger area in
search of optima, and then to gradually do finer searches [18].
An early addition to the basic PSO algorithm was to place an
upper limit on the velocity of a particle to prevent particles from
moving too rapidly through search space. Clerc and Kennedy later
proved that multiplying the velocity vector with a so-called
constriction coefficient made velocity clamping unnecessary [19].
The constriction coefficient is a factor of the local and global
component variables, for which the sum of the two has to be larger
than four for the rule to apply.
The pseudo code of the PSO procedure is as follows

For each particle
Initialize particle
End
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value (pbest) in history
Set current value as the new pbest
End
Choose the particle with the best fitness value of all the particles as the gbest
For each particle
Calculate particle velocity according equation (5)
Update particle position according equation (6)
End
While maximum iterations or minimum error criteria is not attained
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