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In the paper the optimal control problems governed
by parabolic equations are considered. We apply a new
dual dynamic programming approach to derive suffi-
cient optimality conditions for such problems. The idea
is to move all the notions from a state space to a dual
space and to obtain a new verification theorem
providing the conditions which should be satisfied by
a solution of the dual partial differential equation of
dynamic programming. We also give sufficient optim-
ality conditions for the existence of an optimal dual
feedback control and some approximation of the
problem considered which seems to be very useful from
the practical point of view.
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1. Introduction

Consider the following optimal control problem (P):

minimize Jðx, uÞ ¼
Z
½0;T���

Lðt, z, xðt, zÞ, uðt, zÞÞdtdz

þ
Z
�

lðxðT, zÞÞdz

subject to

xtðt, zÞ þ�zxðt, zÞ
¼ fðt, z, xðt, zÞ, uðt, zÞÞ a.e. on ½0,T� � � ð1Þ

xð0, zÞ ¼ ’ð0, zÞ on � ð2Þ
xðt, zÞ ¼  ðt, zÞ on ½0,T� � @� ð3Þ
uðt, zÞ 2 U a. e. on ½0,T� � � ð4Þ

where � is a given subset of Rn which is bounded
with Lipschitz boundary and U is a given nonempty
set in Rm;L, f : ½0,T� � �� R� Rm ! R, l : R ! R
and ’ : Rnþ1 ! R are given functions; x : ½0,T��
� ! R, x 2 W2, 2ð�Þ and u : ½0,T� � � ! Rm is a
Lebesgue measurable function. We assume that
for each s in R, the functions ðt, z, uÞ ! Lðt, z, s, uÞ,
ðt, z, uÞ ! fðt, z, s, uÞ are (L�B)-measurable, where
L�B is the �-algebra of subsets of ½0,T� � �� Rm

generated by products of Lebesgue measurable
subsets of ½0,T� � � and Borel subsets of Rm, and
for each ðt, z, uÞ 2 ½0,T� � �� Rm, the functions
s ! Lðt, z, s, uÞ, s ! fðt, z, s, uÞ are continuous. We
call a pair ðxðt, zÞ, uðt, zÞÞ to be admissible if it
satisfies (1)–(4) and Lðt, z, xðt, zÞ, uðt, zÞÞ is summable;
then the corresponding trajectory x(t, z) is said to be
admissible.

The aim of the paper is to present sufficient
optimality conditions for problem (P) in terms of
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dynamic programming conditions directly. In the
literature, there is not work in which problem (P) is
studied directly by a dynamic programming method.
The only results known to the authors (see e.g. [1]–
[11], [12], [13] and references therein) treat problem (P)
as an abstract problem with an abstract evolution
equation (1) and later derive from abstract Hamilton–
Jacobi equations the suitable sufficient optimality
conditions for problem (P). We propose almost a
direct method to study (P) by a dual dynamic pro-
gramming approach following the method described
in [14] for one dimensional case and in [9] for multi-
dimensional case. We move all notions of a dynamic
programming to a dual space (the space of multipliers)
and then develop a dual dynamic approach together
with a dual Hamilton–Jacobi equation and as a
consequence sufficient optimality conditions for (P).
We also define an optimal dual feedback control in
the terms of which we formulate sufficient conditions
for optimality. Such an approach allows us to
weak significantly the assumptions on the data. An
approximate minimum in terms of the dual dynamic
programming is also investigated.

2. A Dual Dynamic Programming

In this section we describe an intuition of a dual
dynamic approach to optimal control problems gov-
erned by parabolic equations. Let us recall what does
a dynamic programming mean? We have an initial
condition ðt0, x0ðt0, zÞÞ, z 2 � for which we assume
that we have an optimal solution ðx, uÞ. Then by
necessary optimality conditions there exists a con-
jugate function pðt, zÞ ¼ ðy0, yðt, zÞÞ on ½0,T� � �
being a solution to the corresponding adjoint system
(see e.g. [5], [11]). The element p ¼ ðy0, yÞ plays a role
of multipliers from the classical Lagrange problem
with constraints (with multiplier y0 staying by the
functional and y corresponding to the constraint). If
we perturb ðt0, x0Þ then, assuming that the optimal
solution exists for each perturbed problem, we also
have a conjugate function corresponding to it.
Therefore making perturbations of our initial condi-
tions we obtain two sets of functions: optimal trajec-
tories x and corresponding to them conjugate
functions p. The graphs of optimal trajectories cover
some set in a state space (t, z, x), say a set X (in the
classical calculus of variation it is named the field of
extremals), and the graphs of conjugate functions
cover some set in a conjugate space (t, z, p), say a set P
(in classical mechanics it is named the space of
momentums). In the classical dynamic programming

approach we explore the state space (t, z, x), i.e. the set
X (see e.g. [1]) but in the dual dynamic programming
approach we explore the conjugate space (the dual
space) (t, z, p), i.e. the set P (see [14] for one dimen-
sional case and [9] for multidimensional case). It
is worth to note that although in elliptic control
optimization problems we have not possibilities to
perturb that problems, the dual dynamic program-
ming is still possible to be applied (see [10]). It is
natural that if we want to explore the dual space
(t, z, p) then we need a mapping between the set P and
the set X : P 3 ðt, z, pÞ ! ðt, z, ~xxðt, z, pÞÞ 2 X to have
a possibility to formulate, at the end of some con-
sideration in P, any conditions for optimality in our
original problem as well as on an optimal solution x.
Of course, such a mapping should have the property
that for each admissible trajectory x(t, z) lying in X
we must have a function p(t, z) lying in P such
that xðt, zÞ ¼ ~xxðt, z, pðt, zÞÞ. Hence, we conduct all our
investigations in a dual space (t, z, p), i.e. most of our
notions concerning the dynamic programming
are defined in the dual space including a dynamic
programming equation which becames now a dual
dynamic programming equation.

Therefore let P � Rnþ3 be a set of the variables
ðt, z, pÞ ¼ ðt, z, y0, yÞ, ðt, zÞ 2 ½0,T� � �, y0 � 0, y 2 R,
and let c ¼ ðc0, cÞ 2 R2 be fixed. The constant c is
introduced because of the practical purpose only, i.e.
in order to make easier the calculations of some
relation stated below for concrete problems (see
section An Example). We adopt the convention
that ðt, z, cpÞ ¼ ðt, z, c0y0, cyÞ for ðt, z, pÞ 2 P. Let
~xx : P ! R be such a function that for each admissible
trajectory x(t, z) there exists a function pðt, zÞ ¼
ðy0, yðt, zÞÞ, p 2 W2, 2ð½0,T� � �Þ, ðt, z, pðt, zÞÞ 2 P
such that

xðt, zÞ ¼ ~xxðt, z, pðt, zÞÞ for ðt, zÞ 2 ½0,T� � �:

ð5Þ

Now, let us introduce an auxiliary C2 function
Vðt, z, pÞ : P ! R such that for ðt, z, pÞ 2 P,
ðt, z, cpÞ 2 P the following condition is satisfied

Vðt, z, cpÞ ¼ c0y0Vy0ðt, z, cpÞ þ cyVyðt, z, cpÞ
¼ cpVpðt, z, cpÞ: ð6Þ

The condition (6) is the generalization of a tranvers-
ality condition known in classical mechanics as the
orthogonality of a momentum to the front of a wave.
Similarly as in the classical dynamic programming
define at (t, p( � )), where pðzÞ ¼ ðy0, yðzÞÞ is any
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