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a b s t r a c t

A novel methodology hybridizing genetic algorithms (GAs) and support vector regression (SVR) and capa-
ble of forecasting atmospheric corrosion of metallic materials such as zinc and steel has been proposed
and tested. Available techniques of data mining of the atmospheric corrosion of zinc and steel are used to
examine the forecasting capability of the model. In order to improve predictive accuracy and generaliza-
tion ability, GAs are adopted to automatically determine the optimal hyper-parameters for SVR. The per-
formance of the hybrid model (GAs + SVR = GASVR) and the artificial neural network (ANN) has been
compared with the experimental values. The result shows that the hybrid model provides better predic-
tion capability and is therefore considered as a promising alternative method for forecasting atmospheric
corrosion of zinc and steel.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Atmospheric corrosion is an important process causing deterio-
ration of metallic materials exposed to external environments. In
order to study the corrosion behaviors, researchers [1–7] have
developed many models of corrosive damages and kinetic equa-
tions using multiple linear regression techniques. For example,
Feliu et al. [1] have found a general equation, C = Atn, to describe
the corrosion process, where A stands for the corrosion data of
the first year, t is the exposure time in years and C is the corrosion
data after t years. The linear regression technique was used to esti-
mate A and n in terms of affecting factors. The correlation coeffi-
cients for n are 0.44 and 0.62 for steel and zinc, respectively.
However, the result predicted by their proposed linear regression
model is still unsatisfactory since the model only considered the
linear relationship between the affecting factors. Without consid-
ering the nonlinear nature of corrosion behavior, the model has
been effective only in very restrictive areas including partial affect-
ing factors rather than those environments including additional

important factors or other complex interactions. Such a limitation
may either be due to the lack of quality in the corrosion data or the
oversimplification of the mathematical model.

On the other hand, the artificial neural network (ANN) has been
applied to the study of corrosion [8–13]. The ANN method is more
applicable for modeling nonlinear and complex systems, which are
hard to be described by physical models. Díaz and López [10] ap-
plied an ANN model to estimate the damage function of carbon
steel as a function of some environmental variables. The ANN
numerical model generates better predictions than the classical
linear regression. Cai et al. [12] presented a phenomenological
model of the atmospheric corrosion which outperformed the mul-
tiple linear regression model of Feliu et al. [1]. Pintos et al. [13] pre-
sented an ANN model for the prediction of the corrosion rate of
carbon steel as a function of relevant metereochemical variables.
However, conventional ANNs still suffer from several weaknesses
such as the need for a large number of controlling parameters,
the difficulty in obtaining stable solutions, the danger of over-fit-
ting and thus the lack of generalization capability.

Recently, support vector machine (SVM) developed by Vapnik
[14–15] has been receiving increased attention with remarkable
results. The main difference between conventional ANNs and
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SVM lies in the risk minimization principle. Conventional ANNs
implement the empirical risk minimization (ERM) principle to
minimize the error on the training data, while SVM adheres to
the Structural Risk Minimization (SRM) principle seeking to set
up an upper bound of the generalization error [16]. The term
SVM is typically used to describe classification problems with sup-
port vector methods. However, with the introduction of e-insensi-
tive loss function, SVM has been extended to solve nonlinear
regression estimation problems, and a regression version of SVM
is also called support vector regression (SVR). SVM has also been
applied to solve engineering problems concerning pattern recogni-
tion, regression estimation, time-series prediction and inverse
solution of dynamic systems [17–25]. SVR has achieved great suc-
cess both in academic and industrial platforms due to its many
attractive features and promising generalization performance.

Evolutionary algorithms (EAs) are the common term used for
algorithms based on principles of natural evolution. EAs contain
genetic algorithms (GAs), evolution strategies, evolutionary pro-
gramming and genetic programming (GP). EAs have been applied
to SVM in two ways [26]: using GP to evolve kernel functions,
and using EAs to evolve kernel parameters. Sullivan and Luke
[26] applied GP to find the SVM’s optimal kernel function. Howley
and Madden [27] utilized GP to evolve a suitable kernel for a SVM.
Majid et al. [28] developed Optimal Composite Classifier through
the combination of SVM classifiers using GP for gender classifica-
tion problem. Huang et al. [29] proposed a hybrid GA-SVM strategy
capable of simultaneously performing feature selection task and
model parameters optimization. de Souza and de Carvalho [30]
presented an approach which combined SVM and GAs for a multi-
class model selection.

EAs have already been applied for SVM model selection and
optimization of parameters in other fields, especially like that of
pattern recognition. However, the methods through the combina-
tion of EAs and SVM have scarcely been used to solve nonlinear
regression estimation problems in materials science. As mentioned
above, the key to establishing an efficient SVR model is to choose a
proper set of hyper-parameters. However, no effective guidelines
have ever been put forward. Some of the recommendations are
contradictory and confusing. Therefore, real-value genetic algo-
rithms (RGAs) are adopted to automatically determine the optimal
hyper-parameters of SVR with the highest predictive accuracy and
generalization ability simultaneously.

In this paper, we have proposed SVR-based model by means of
the integration of RGAs and SVR to forecast atmospheric corrosion
of zinc and steel. In Section 2, we provide a detailed description of
SVR and GASVR models. In Section 3, we describe the data source
and experimental settings. Then the results of RGA have been ana-
lyzed and the parameters for SVR have been optimized, followed
by the discussion of the experimental results in Section 4. In addi-
tion, we also compare our method with that of ANN. Finally, we
present our conclusions in Section 5.

2. Recurrent support vector machines with genetic algorithms

2.1. Support vector regression

The basic concept of support vector regression is to map nonlin-
early the original data x into a higher dimensional feature space
and solve a linear regression problem in this feature space [14–
17]. First we use a linear function to regress the data set {xi, yi},
i = 1, 2, . . ., n, xi 2 Rn, yi 2 R. The SVM regression function is

f ðxÞ ¼ hw; xi þ b: ð1Þ

The regression problem is equivalent to minimize the following reg-
ularized risk function:

Rðf Þ ¼ 1
n

Xn

i¼1

Lðf ðxiÞ � yiÞ þ
1
2
jjwjj2; ð2Þ

where

Lðf ðxÞ � yÞ ¼
kf ðxÞ � yk � e forjf ðxÞ � yjP e;

0; otherwise:

�
ð3Þ

Eq. (3) is also called e-insensitive loss function. This function de-
fines an e-tube. If the predicted value is within the e-tube, the loss
is zero. If the predicted value is outside the tube, the loss is equal to
the magnitude of the difference between the predicted value and
the radius e of the tube. By substituting the e-insensitive loss func-
tion into Eq. (2), the optimization object becomes:

minimize
1
2
kwk2 þ C

Xn

i¼1

ðnþ n�i Þ ð4Þ

with the constraints,

subject to
yi � hw; xii � b 6 eþ ni

hw; xii þ b� yi 6 eþ n�i
ni; n

�
i P 0

8><
>: ; ð5Þ

where the constant C > 0 stands for the penalty degree of the sam-
ple with error exceeding e. Two positive slack variables n and n* rep-
resent the distance from actual values to the corresponding
boundary values of e-tube. A dual problem can then be derived by
using the optimization method to maximize the function

maximize� 1
2

Xn

i;j¼1

ðai � a�i Þðaj � a�j Þðxi; xjÞ—e
Xn

i¼1

ðai þ a�i Þ

þ
Xn

i¼1

yiðai � a�i Þ; ð6Þ

subject to
Xn

i¼1

ðai � a�i Þ ¼ 0 and 0 6 ai;a�i 6 C; ð7Þ

where ai and ai
* are Lagrange multipliers.

The SVM for function fitting obtained by using the above-men-
tioned maximization function is then given by

f ðxÞ ¼
Xn

i¼1

ðai � a�i Þhxi; xi þ b: ð8Þ

Only parts of ai and a�i have non-zero values. These errors of data
points on non-zero coefficients are referred to as the support vectors.

As for the nonlinear cases, the solution can be found by map-
ping the original problems to the linear ones in a characteristic
space of high dimension, in which dot product manipulation can
be substituted by a kernel function, i.e. K(xi, xj) = u(xi)u(xj). In this
work, the Gaussian radial basis kernel function (RBF)

exp � 1
2
kxi�xjk

r

� �2
� �

is used in the SVR. Substituting K(xi,xj) for

hxi; xji in Eq. (6) allows us to reformulate the SVM algorithm in a
nonlinear paradigm. Finally, we have

f ðxÞ ¼
Xn

i¼1

ðai � a�i ÞKðxi; xÞ þ b: ð9Þ

2.2. GA-SVR model

Genetic algorithms are optimization and search technique
philosophically based on the concepts of biological evolution (nat-
ural genetics and natural selection) and Darwin’s theory of survival
of the best [31–34]. These algorithms are used to solve linear and
nonlinear problems by exploring all regions of state space and
exploiting potential areas through mutation, crossover and selec-
tive operations applied to individuals in the population [31]. The
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