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Linear programming support vector machines
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Abstract

Based on the analysis of the conclusions in the statistical learning theory, especially the VC dimension of linear functions,
linear programming support vector machines (or SVMs) are presented including linear programming linear and nonlinear
SVMs. In linear programming SVMs, in order to improve the speed of the training time, the bound of the VC dimension is
loosened properly. Simulation results for both arti2cial and real data show that the generalization performance of our method
is a good approximation of SVMs and the computation complex is largely reduced by our method.? 2002 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the 1970s’, Vapnik et al. have applied themselves to
the study of statistical learning theory [1–3]. Until the early
of the 1990, a new kind of learning machines, support vec-
tor machine (SVM), was presented based on those theories
[2,4,5]. The main study of statistical learning theory is the
model of learning from examples, which can be described
as: there are l random independent identically distributed
examples (x1; y1); (x2; y2); : : : ; (xl; yl); ((x; y)∈ (Rn; R))
drawn according to the uniform probability distribution
P(x; y); (P(x; y) = P(x)P(y |x)). Given a set of functions
f(x; 	); 	∈
 (where 
 is a parameter set) from which
the goal of learning from examples is to select a function
f(x; 	0) that can express the relationship between x and
y in the best possible way. In general, in order to obtain
f(x; 	0), one has to minimize the expected risk functional

R(	) =
∫

L(y; f(x; 	))P(x; y) dx dy; (1.1)

where L(y; f(x; 	)) measures the loss between the response
y to a given input x and the response f(x; a) provided
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by the learning machine. The learning problems such as
the problems of pattern recognition, regression estimation
and density estimation may be taken as the same learning
models with diFerent loss functions [2]. In this paper, we
only deal with the problem of pattern recognition. Consider
the following loss function

L(y; f(x; 	)) =

{
0 if y = f(x; 	);

1 if y �=f(x; 	):
(1.2)

Due to the probability distribution P(x; y) in Eq. (1.1) is
unknown, the expected risk functional is replaced by the
empirical risk functional

Remp(	) =
1
l

l∑
i=1

L(yi; f(xi ; 	)): (1.3)

In order to know the quality of the empirical risk Remp(	)
to approximate the expected risk, Vapnik presented the fol-
lowing bound theorem [2]. With probability at least 1 − �
(06 �6 1), the inequality

R(	)6Remp(	) +
�
2

(
1 +

√
1 +

4Remp(	)
�

)
(1.4)

holds true. Where � = 4(h(ln(2l=h) + 1) − ln �)=l and h
is the VC dimension of the set of functions f(x; 	), 	 ∈ I.
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From Eq. (1.4), we can see that the minimization of the
expected risk R(	) is equal to the minimization of the two
terms on the right-hand side of Eq. (1.4) at the same time.
The 2rst term on the right of Eq. (1.4) Remp(	) is minimized
by learning process. The second term varies with the VC
dimension h and the number of examples l. The smaller the
VC dimension h and the larger the number of examples l,
the smaller the value of the second term. In fact, the num-
ber of examples is 2nite. So for the case of a small example
set, the minimization of the expected risk is implemented
by minimizing the empirical risk and the VC dimension.
Generally speaking, a complex target function set or a large
hypothesis space is required for minimizing the empirical
risk. But a small hypothesis space is requested for minimiz-
ing the VC dimension of the target function set. Therefore,
the minimization problem is in a dilemma, the best solution
of the problem is to take a compromise between them.

Now, restrict the target function to the linear function.
Similar to the set of �-margin separating hyperplanes de-
2ned in Ref. [3], we de2ne the set of m�-margin separat-
ing hyperplanes. Let us denote the target functions set by
f(x;w; b)=wTx+ b. If these functions classify an example
x as follows:

y =

{
1; wTx + b¿�;

−1; wTx + b6− �;
�¿ 0 (1.5)

then the set f(x;w; b) = wTx + b is called the set of
m�-margin separating hyperplanes whose margin is

m� =
�

||w||2 ; (1.6)

where || · ||2 denotes l2-norm, namely Euclidean distance.
There is a conclusion about the VC dimension of the set
of m�-margin separating hyperplanes. Let vectors x∈X be-
long to a sphere of radius R. Then the set of m�-margin
separating hyperplanes has the VC dimension h bounded by
the inequality:

h6min
([

R2

m2
�

]
; n
)
+ 1; (1.7)

where n is the dimension of input space. From Eq. (1.7),
we can see that if the VC dimension of the target functions
set h is ¡n, then h varies inversely with the margin m2

�.
In this way, f(x;w0; b0) can be approached by minimizing
the empirical risk functional and maximizing the separating
margin m�, which is the structural risk in SVMs introduced
by Vapnik:

Rstructure(	) = CRemp(	) +
1
m2

�
; (1.8)

where the constant C¿ 0 is a parameter chosen by the
users and 	 is a parameter of the target function set. For
l random independent identically distributed examples
(x1; y1); (x2; y2); : : : ; (xl; yl); ((x; y)∈ (Rn; R)), the linear

SVMs for pattern recognition have the following optimiza-
tion problem [4]:

min
1
2
||w||22 + C

l∑
i=1

 i; (1.9)

s:t: yi((w · xi) + b)¿ 1−  i;

 i¿ 0; i = 1; : : : ; l;

where (·; ·) denotes the inner product. Minimizing the 2rst
term in Eq. (1.9) 1

2 ||w||22 plays the role of controlling the
capacity of the learning machine and avoiding the over2tting
of the machine. While minimizing the second term is to
minimize the empirical risk. The Wolfe dual programming
of Eq. (1.9) is [4]

max W (	) =
l∑

i=1

	i − 1
2

l∑
i; j=1

	i	jyiyj(xi · xj); (1.10)

s:t:
l∑

i=1

	iyi = 0; (1.11)

	i ∈ [0; C]; i = 1; : : : ; l: (1.12)

The decision function has the following form:

f(x) =
l∑

i=1

	iyi(xi · x) + b (1.13)

and

y = sgn(f(x)): (1.14)

The kernel functions are introduced in linear SVMs, which
leads to nonlinear SVMs [4]:

max W (	) =
l∑

i=1

	i − 1
2

l∑
i; j=1

	i	jyiyjK(xi · xj) (1.16)

s:t:
l∑

i=1

	iyi = 0 (1.17)

	i ∈ [0; C]; i = 1; : : : ; l: (1.18)

And then the decision function can be written as

f(x) =
l∑

i=1

	iyiK(xi · x) + b: (1.19)

In a nutshell, the theory foundation of SVMs (statisti-
cal learning theory) is rather perfect. But training a SVM
requires the solution of a quadratic programming (QP)
optimization that is not easy to implement, in particular
for large-scale problems. Based on the statistical learning
theory, the linear programming SVMs that are extremely
simple without explicitly solving QP problems are proposed.
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